Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas Chlororaphis (aureofaciens) Strain 30-84

Persistent Link:
http://hdl.handle.net/10150/193917
Title:
Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas Chlororaphis (aureofaciens) Strain 30-84
Author:
Maddula, V S R Krishna
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Pseudomonas chlororaphis (aureofaciens) 30-84 is a biocontrol bacterium effective against take-all disease of wheat. Phenazine (PZ) production by strain 30-84 is the primary mechanism responsible for pathogen inhibition and the rhizosphere persistence of 30-84. The PhzR/PhzI system of strain 30-84 directly regulates PZ production and mutations in this QS system are defective in biofilm formation. Genetic complementation or direct addition of AHL signal restored biofilm formation to a phzI mutant. Mutations in PZ biosynthesis were equally defective in biofilm formation. Addition of PZ or genetic complementation of the PZ biosynthetic mutation restored biofilm formation. QS and PZ production also were involved in the establishment of populations on wheat seeds and plant roots. Presence of 10% wild type strain 30-84 in mixtures with QS or PZ mutants restored root colonization. These data demonstrate that QS and specifically PZ production are essential for biofilm formation by strain 30-84. This is a new role for PZs in the rhizosphere community.Strain 30-84 produces primarily phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). We generated derivatives of strain 30-84 that produced the same total amount of PZs as the wild type but produced only PCA, or more efficiently converted PCA to 2-OH-PCA. These derivatives with altered PZ ratios differed from the wild type in initial attachment, biofilm architecture, and dispersal. Increased 2-OH-PCA production increased initial attachment, although both alterations resulted in thicker biofilms and reduced dispersal rates. Loss of 2-OH-PCA production resulted in a significant reduction in pathogen inhibition. My findings indicate that alterations in the endogenous ratios of PZs have wide-ranging effects on the biology of strain 30-84. I initiated studies to understand the mechanisms by which PZs affect surface attachment and biofilm development. Addition of PZs to metabolically inactivated cells improved adhesion compared to the inactive cells alone, suggesting that PZs may improve initial binding to surfaces. Results from whole genome transcription profiles of wild type strain 30-84 to a PZ mutant indicate that genes potentially involved in biofilm formation were up-regulated in the presence of PZs. These results provide initial evidence that PZs may modulate cell adhesion and biofilm formation via multiple mechanisms.
Type:
text; Electronic Dissertation
Keywords:
Pseudomonas; Biofilms; Phenazines; Quorum sensing; Biological control
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Plant Pathology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Pierson, Leland S.
Committee Chair:
Pierson, Leland S.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleQuorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas Chlororaphis (aureofaciens) Strain 30-84en_US
dc.creatorMaddula, V S R Krishnaen_US
dc.contributor.authorMaddula, V S R Krishnaen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractPseudomonas chlororaphis (aureofaciens) 30-84 is a biocontrol bacterium effective against take-all disease of wheat. Phenazine (PZ) production by strain 30-84 is the primary mechanism responsible for pathogen inhibition and the rhizosphere persistence of 30-84. The PhzR/PhzI system of strain 30-84 directly regulates PZ production and mutations in this QS system are defective in biofilm formation. Genetic complementation or direct addition of AHL signal restored biofilm formation to a phzI mutant. Mutations in PZ biosynthesis were equally defective in biofilm formation. Addition of PZ or genetic complementation of the PZ biosynthetic mutation restored biofilm formation. QS and PZ production also were involved in the establishment of populations on wheat seeds and plant roots. Presence of 10% wild type strain 30-84 in mixtures with QS or PZ mutants restored root colonization. These data demonstrate that QS and specifically PZ production are essential for biofilm formation by strain 30-84. This is a new role for PZs in the rhizosphere community.Strain 30-84 produces primarily phenazine-1-carboxylic acid (PCA) and 2-hydroxy-PCA (2-OH-PCA). We generated derivatives of strain 30-84 that produced the same total amount of PZs as the wild type but produced only PCA, or more efficiently converted PCA to 2-OH-PCA. These derivatives with altered PZ ratios differed from the wild type in initial attachment, biofilm architecture, and dispersal. Increased 2-OH-PCA production increased initial attachment, although both alterations resulted in thicker biofilms and reduced dispersal rates. Loss of 2-OH-PCA production resulted in a significant reduction in pathogen inhibition. My findings indicate that alterations in the endogenous ratios of PZs have wide-ranging effects on the biology of strain 30-84. I initiated studies to understand the mechanisms by which PZs affect surface attachment and biofilm development. Addition of PZs to metabolically inactivated cells improved adhesion compared to the inactive cells alone, suggesting that PZs may improve initial binding to surfaces. Results from whole genome transcription profiles of wild type strain 30-84 to a PZ mutant indicate that genes potentially involved in biofilm formation were up-regulated in the presence of PZs. These results provide initial evidence that PZs may modulate cell adhesion and biofilm formation via multiple mechanisms.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectPseudomonasen_US
dc.subjectBiofilmsen_US
dc.subjectPhenazinesen_US
dc.subjectQuorum sensingen_US
dc.subjectBiological controlen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Pathologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPierson, Leland S.en_US
dc.contributor.chairPierson, Leland S.en_US
dc.contributor.committeememberVanEtten, Hans D.en_US
dc.contributor.committeememberHawes, Martha C.en_US
dc.contributor.committeememberPierson, Elizabeth A.en_US
dc.contributor.committeememberCurry, Joan E.en_US
dc.identifier.proquest2639en_US
dc.identifier.oclc659749628en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.