Persistent Link:
http://hdl.handle.net/10150/193793
Title:
List-mode SPECT reconstruction using empirical likelihood
Author:
Lehovich, Andre
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation investigates three topics related to imagereconstruction from list-mode Anger camera data. Our mainfocus is the processing of photomultiplier-tube (PMT)signals directly into images. First we look at the use of list-mode calibration data toreconstruct a non-parametric likelihood model relating theobject to the data list. The reconstructed model can thenbe combined with list-mode object data to produce amaximum-likelihood (ML) reconstruction, an approach we calldouble list-mode reconstruction. This trades off reducedprior assumptions about the properties of the imaging systemfor greatly increased processing time and increaseduncertainty in the reconstruction. Second we use the list-mode expectation-maximization (EM)algorithm to reconstruct planar projection images directlyfrom PMT data. Images reconstructed by EM are compared withimages produced using the faster and more common techniqueof first producing ML position estimates, then histogramingto form an image. A mathematical model of the human visualsystem, the channelized Hotelling observer, is used tocompare the reconstructions by performing the Rayleigh task,a traditional measure of resolution. EM is found to producehigher resolution images than the histogram approach,suggesting that information is lost during the positionestimation step. Finally we investigate which linear parameters of an objectare estimable, in other words may be estimated without biasfrom list-mode data. We extend the notion of a linearsystem operator, familiar from binned-mode systems, tolist-mode systems, and show the estimable parameters aredetermined by the range of the adjoint of the systemoperator. As in the binned-mode case, the list-modesensitivity functions define ``natural pixels'' with whichto reconstruct the object.
Type:
text; Electronic Dissertation
Keywords:
list-mode image reconstruction; EM algorithm; density estimation
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Barrett, Harrison H.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleList-mode SPECT reconstruction using empirical likelihooden_US
dc.creatorLehovich, Andreen_US
dc.contributor.authorLehovich, Andreen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation investigates three topics related to imagereconstruction from list-mode Anger camera data. Our mainfocus is the processing of photomultiplier-tube (PMT)signals directly into images. First we look at the use of list-mode calibration data toreconstruct a non-parametric likelihood model relating theobject to the data list. The reconstructed model can thenbe combined with list-mode object data to produce amaximum-likelihood (ML) reconstruction, an approach we calldouble list-mode reconstruction. This trades off reducedprior assumptions about the properties of the imaging systemfor greatly increased processing time and increaseduncertainty in the reconstruction. Second we use the list-mode expectation-maximization (EM)algorithm to reconstruct planar projection images directlyfrom PMT data. Images reconstructed by EM are compared withimages produced using the faster and more common techniqueof first producing ML position estimates, then histogramingto form an image. A mathematical model of the human visualsystem, the channelized Hotelling observer, is used tocompare the reconstructions by performing the Rayleigh task,a traditional measure of resolution. EM is found to producehigher resolution images than the histogram approach,suggesting that information is lost during the positionestimation step. Finally we investigate which linear parameters of an objectare estimable, in other words may be estimated without biasfrom list-mode data. We extend the notion of a linearsystem operator, familiar from binned-mode systems, tolist-mode systems, and show the estimable parameters aredetermined by the range of the adjoint of the systemoperator. As in the binned-mode case, the list-modesensitivity functions define ``natural pixels'' with whichto reconstruct the object.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectlist-mode image reconstructionen_US
dc.subjectEM algorithmen_US
dc.subjectdensity estimationen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairBarrett, Harrison H.en_US
dc.contributor.committeememberClarkson, Ericen_US
dc.contributor.committeememberWatkins, Josephen_US
dc.contributor.committeememberKupinski, Matthewen_US
dc.identifier.proquest1098en_US
dc.identifier.oclc137353968en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.