Persistent Link:
http://hdl.handle.net/10150/193682
Title:
Path Matched Vibration Insensitive Fizeau Interferometer
Author:
Kimbrough, Bradley Trent
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
An on-axis, vibration insensitive, polarization Fizeau interferometer is realized through the use of a novel pixelated mask spatial carrier phase shifting technique in conjunction with a low coherence source and a polarization path matching mechanism. In this arrangement, coherence is used to effectively separate out the orthogonally polarized test and reference beam components for interference. With both the test and the reference beams on-axis, the common path cancellation advantages of the Fizeau interferometer are maintained. Microwave modulation of a high powered red laser diode is used to create a 15 mW laser source having a coherence length of 250 um with minimal sidelobe ringing. With a 15 mW source, the maximum camera shutter speed, used when measuring a 4% reflector, was 150 usec, resulting in very robust vibration insensitivity. Additionally, stray light interference is substantially reduced due to the source's short coherence, allowing the measurement of thin transparent optics. Experimental results show the performance of this new interferometer to be within the specifications of commercial phase shifting interferometers.This work starts with a basic review of interferometry, phase shifting, and polarization as a lead in to a description of the theory and operation of the pixelated mask spatial carrier phase shifting technique. An analysis of the standard Fizeau Interferometer is then given. This is followed by detailed theoretical discussion of the path matched vibration insensitive (PMVI) Fizeau, which includes a theoretical model of the effects of multiple beam return from the test surface when measuring high value reflectors. The coherence properties of laser diodes are then discussed, a theoretical model for the effects of high frequency drive current is derived, and experimental results are given. Finally, the performance of the PMVI Fizeau is experimentally analyzed, potential error sources discussed, and suggestions for improvements provided.
Type:
text; Electronic Dissertation
Keywords:
Interferometry; Optical testing; Fizeau
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Wyant, James C.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titlePath Matched Vibration Insensitive Fizeau Interferometeren_US
dc.creatorKimbrough, Bradley Trenten_US
dc.contributor.authorKimbrough, Bradley Trenten_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAn on-axis, vibration insensitive, polarization Fizeau interferometer is realized through the use of a novel pixelated mask spatial carrier phase shifting technique in conjunction with a low coherence source and a polarization path matching mechanism. In this arrangement, coherence is used to effectively separate out the orthogonally polarized test and reference beam components for interference. With both the test and the reference beams on-axis, the common path cancellation advantages of the Fizeau interferometer are maintained. Microwave modulation of a high powered red laser diode is used to create a 15 mW laser source having a coherence length of 250 um with minimal sidelobe ringing. With a 15 mW source, the maximum camera shutter speed, used when measuring a 4% reflector, was 150 usec, resulting in very robust vibration insensitivity. Additionally, stray light interference is substantially reduced due to the source's short coherence, allowing the measurement of thin transparent optics. Experimental results show the performance of this new interferometer to be within the specifications of commercial phase shifting interferometers.This work starts with a basic review of interferometry, phase shifting, and polarization as a lead in to a description of the theory and operation of the pixelated mask spatial carrier phase shifting technique. An analysis of the standard Fizeau Interferometer is then given. This is followed by detailed theoretical discussion of the path matched vibration insensitive (PMVI) Fizeau, which includes a theoretical model of the effects of multiple beam return from the test surface when measuring high value reflectors. The coherence properties of laser diodes are then discussed, a theoretical model for the effects of high frequency drive current is derived, and experimental results are given. Finally, the performance of the PMVI Fizeau is experimentally analyzed, potential error sources discussed, and suggestions for improvements provided.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectInterferometryen_US
dc.subjectOptical testingen_US
dc.subjectFizeauen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairWyant, James C.en_US
dc.contributor.committeememberWyant, James C.en_US
dc.contributor.committeememberChipman, Russell A.en_US
dc.contributor.committeememberHayes, Johnen_US
dc.identifier.proquest1444en_US
dc.identifier.oclc137356812en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.