Formation and Electrical Properties of Buried Oxide Layers in Thin Simox Materials

Persistent Link:
http://hdl.handle.net/10150/193603
Title:
Formation and Electrical Properties of Buried Oxide Layers in Thin Simox Materials
Author:
Jutarosaga, Tula
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The effects of implantation conditions and annealing conditions on the formation of buried oxide layers in the low-dose low-energy SIMOX materials were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), electron paramagnetic resonance spectroscopy (EPR). The electrical properties of the buried oxide layers were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements.The distribution of oxygen and defects in the as-implanted materials due to the implantation conditions (oxygen dose and energy) had significant effects on the formation of the buried oxide layer in low-dose low-energy SIMOX substrates. Multiply faulted defects (MFDs) and small oxide precipitates were observed in the projection range (Rp) in as-implanted samples. As increasing the dose, the mixture of silicon and oxide (silicon striations) also formed around Rp. The locations and shapes of the silicon striations control the density and size of silicon islands in the fully-annealed SIMOX at 1350oC.Upon annealing, the buried oxide layers become stoichiometric. Also, different domains including round, square, and pyramid shapes with the step-terrace structure were observed at the top silicon and buried oxide interface. Round domains are observed in the early stage of the annealing process, while the square and pyramid domains are observed after the high temperature annealing. The mean RMS roughness decreases with increasing time and annealing temperature and decreases with either increasing the implantation dose or decreasing implantation energy. Qualitative mechanisms of Si-SiO2 surface flattening are presented in terms of the variations of morphological features with the processing conditions.In the fully-annealed SIMOX wafers, the silicon pipes and silicon islands were observed in the sample implanted with the dose below 3.0×1017 O+/cm2 and above 3.5×1017 O+/cm2, respectively for the samples implanted at 100 keV. The presence of silicon pipes and islands degrades the quality of the buried oxide layer by reducing the breakdown field strength. It was found that proper annealing ambient and ramping rates would allow the formation of the buried oxide layer containing no silicon island. By controlling the oxygen content in the ambient, the growth of the buried oxide can be enhanced.
Type:
text; Electronic Dissertation
Keywords:
Materials Science & Engineering
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Materials Science & Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Seraphin, Supapan

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleFormation and Electrical Properties of Buried Oxide Layers in Thin Simox Materialsen_US
dc.creatorJutarosaga, Tulaen_US
dc.contributor.authorJutarosaga, Tulaen_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe effects of implantation conditions and annealing conditions on the formation of buried oxide layers in the low-dose low-energy SIMOX materials were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), electron paramagnetic resonance spectroscopy (EPR). The electrical properties of the buried oxide layers were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements.The distribution of oxygen and defects in the as-implanted materials due to the implantation conditions (oxygen dose and energy) had significant effects on the formation of the buried oxide layer in low-dose low-energy SIMOX substrates. Multiply faulted defects (MFDs) and small oxide precipitates were observed in the projection range (Rp) in as-implanted samples. As increasing the dose, the mixture of silicon and oxide (silicon striations) also formed around Rp. The locations and shapes of the silicon striations control the density and size of silicon islands in the fully-annealed SIMOX at 1350oC.Upon annealing, the buried oxide layers become stoichiometric. Also, different domains including round, square, and pyramid shapes with the step-terrace structure were observed at the top silicon and buried oxide interface. Round domains are observed in the early stage of the annealing process, while the square and pyramid domains are observed after the high temperature annealing. The mean RMS roughness decreases with increasing time and annealing temperature and decreases with either increasing the implantation dose or decreasing implantation energy. Qualitative mechanisms of Si-SiO2 surface flattening are presented in terms of the variations of morphological features with the processing conditions.In the fully-annealed SIMOX wafers, the silicon pipes and silicon islands were observed in the sample implanted with the dose below 3.0×1017 O+/cm2 and above 3.5×1017 O+/cm2, respectively for the samples implanted at 100 keV. The presence of silicon pipes and islands degrades the quality of the buried oxide layer by reducing the breakdown field strength. It was found that proper annealing ambient and ramping rates would allow the formation of the buried oxide layer containing no silicon island. By controlling the oxygen content in the ambient, the growth of the buried oxide can be enhanced.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMaterials Science & Engineeringen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMaterials Science & Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairSeraphin, Supapanen_US
dc.contributor.committeememberPotter, Jr., Barrett G.en_US
dc.contributor.committeememberLucas, Pierreen_US
dc.contributor.committeememberDavenport, William G.en_US
dc.identifier.proquest1897en_US
dc.identifier.oclc659746461en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.