Persistent Link:
http://hdl.handle.net/10150/193586
Title:
Mollusk-Shell Radiocarbon as a Paleoupwelling Proxy in Peru
Author:
Jones, Kevin Bradley
Issue Date:
2009
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mollusk shells from Peruvian archaeological middens provide brief (< 5 yr per shell) records of past marine conditions. Marine radiocarbon age, R, is recorded in shell carbonate at the time of precipitation. R varies with changes in upwelling: when radiocarbon-depleted sub-thermocline water wells up, R is large; increased contribution from radiocarbon-enriched surface water (due to seasonal cycles or an El Niño event) reduces R. Are molluscan records of R a useful proxy for Peruvian upwelling? If so, does R from archaeological shells reveal mid-Holocene upwelling changes that constrain the Holocene history of El Niño-Southern Oscillation (ENSO)? Profiles of R along ontogeny from early 20th century Argopecten purpuratus (bay scallop) shells and mid-Holocene A. purpuratus, Mesodesma donacium (surf clam), and Trachycardium procerum (cockle) shells from eight coastal Peru locations show that R varies by up to 530 ± 200 ¹⁴C yr within individual shells. El Niño events are easily detectable in post-1950s shell carbonate due to increased radiocarbon contrast between sub- and super-thermocline water from “bomb carbon,” but R differences between El Niño and La Niña shells from the early 20th century are subtle. Decreasing precision in older shells due to ¹⁴C decay makes detecting El Niño events in the archaeological past using radiocarbon very difficult. Because of intrashell radiocarbon variation, caution is prudent when using marine material for chronometry in variable upwelling environments. Based on modeling, mollusks that grow seasonally rather than year-round can skew long-term average (> 1 yr) R reconstructions by nearly 200 ¹⁴C yr toward R of the preferred growth season. Coldloving M. donacium, for example, records older marine reservoir ages on average than A. purpuratus in the same water, because A. purpuratus grows in both warm and cold conditions. Comparisons of R between species with opposite seasonal growth habits can compound this effect. Because of intrashell R variation, seasonal growth biases, and measurement uncertainties, a change in R due to past ENSO changes would have to be hundreds of ¹⁴C yr or greater to be identifiable. Thus far, clear evidence for such a Holocene change in R has not been seen.
Type:
text; Electronic Dissertation
Keywords:
Argopecten; Mesodesma; Peru; radiocarbon; reservoir age; upwelling
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Geosciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hodgins, Gregory; Quade, Jay
Committee Chair:
Hodgins, Gregory; Quade, Jay

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMollusk-Shell Radiocarbon as a Paleoupwelling Proxy in Peruen_US
dc.creatorJones, Kevin Bradleyen_US
dc.contributor.authorJones, Kevin Bradleyen_US
dc.date.issued2009en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMollusk shells from Peruvian archaeological middens provide brief (< 5 yr per shell) records of past marine conditions. Marine radiocarbon age, R, is recorded in shell carbonate at the time of precipitation. R varies with changes in upwelling: when radiocarbon-depleted sub-thermocline water wells up, R is large; increased contribution from radiocarbon-enriched surface water (due to seasonal cycles or an El Niño event) reduces R. Are molluscan records of R a useful proxy for Peruvian upwelling? If so, does R from archaeological shells reveal mid-Holocene upwelling changes that constrain the Holocene history of El Niño-Southern Oscillation (ENSO)? Profiles of R along ontogeny from early 20th century Argopecten purpuratus (bay scallop) shells and mid-Holocene A. purpuratus, Mesodesma donacium (surf clam), and Trachycardium procerum (cockle) shells from eight coastal Peru locations show that R varies by up to 530 ± 200 ¹⁴C yr within individual shells. El Niño events are easily detectable in post-1950s shell carbonate due to increased radiocarbon contrast between sub- and super-thermocline water from “bomb carbon,” but R differences between El Niño and La Niña shells from the early 20th century are subtle. Decreasing precision in older shells due to ¹⁴C decay makes detecting El Niño events in the archaeological past using radiocarbon very difficult. Because of intrashell radiocarbon variation, caution is prudent when using marine material for chronometry in variable upwelling environments. Based on modeling, mollusks that grow seasonally rather than year-round can skew long-term average (> 1 yr) R reconstructions by nearly 200 ¹⁴C yr toward R of the preferred growth season. Coldloving M. donacium, for example, records older marine reservoir ages on average than A. purpuratus in the same water, because A. purpuratus grows in both warm and cold conditions. Comparisons of R between species with opposite seasonal growth habits can compound this effect. Because of intrashell R variation, seasonal growth biases, and measurement uncertainties, a change in R due to past ENSO changes would have to be hundreds of ¹⁴C yr or greater to be identifiable. Thus far, clear evidence for such a Holocene change in R has not been seen.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectArgopectenen_US
dc.subjectMesodesmaen_US
dc.subjectPeruen_US
dc.subjectradiocarbonen_US
dc.subjectreservoir ageen_US
dc.subjectupwellingen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHodgins, Gregoryen_US
dc.contributor.advisorQuade, Jayen_US
dc.contributor.chairHodgins, Gregoryen_US
dc.contributor.chairQuade, Jayen_US
dc.contributor.committeememberBeck, Warrenen_US
dc.contributor.committeememberHolliday, Vanceen_US
dc.contributor.committeememberPatchett, Jonathanen_US
dc.identifier.proquest10325en_US
dc.identifier.oclc752259936en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.