Persistent Link:
http://hdl.handle.net/10150/193571
Title:
Integrated Airline Planning Models
Author:
Johnson, Anne Elizabeth Catlin
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Technological and industrial advances have resulted in the growth of large enterprises.Optimization models have been developed to increase the efficiency of partsof these systems, but models that optimize entire enterprises are frequently immenseand very complex to solve. Sequential solution techniques have resulted, which leadto useful, but not globally optimal, solutions. For example, airlines develop flightschedules based on strategic business objectives, and sequentially plan operationalprocesses to execute the schedule. Proven models that exist for the operationalsubproblems are solved sequentially, begin with a flight schedule, and allow limitedfeedback in the planning process. Since small changes to the individual parts haveproduced millions of dollars in improvement, an overall optimal solution could yielda significant increase in the airline's profit.We consider a modelling paradigm that moves toward integrated methods for theairline schedule planning phase using surrogate representations of the operationalproblems. In this context, surrogate models are relatively easy to solve, yet suffi-ciently representative of the operational problem to reflect its impact on schedulechoices. To illustrate, we develop surrogate models of maintenance scheduling, crewscheduling, and revenue generation. We solve the master schedule problem with eachsurrogate model using well-known decomposition techniques, and then combine thesurrogates into a single model that is readily decomposed into multiple subproblemsand solved.The model developments include additional considerations in constructing surrogatemodels. For example, to demonstrate validation of a surrogate's utility, wecompared the feasibility indications from the maintenance subproblem surrogate tothose from a larger, exact model of maintenance feasibility. The crew scheduling surrogatemodel development incorporates disruptions in the master schedule, drivingthe schedule to account for both crew costs and the impact of random disruptions.Finally, in the revenue management subproblem, we consider random demand thatimpacts a schedule's profitability.While surrogate solutions are inherently of little utility operationally, the resultsare useful for shaping the master schedule towards a global optimum. The paradigmallows for consideration of the subproblems in initial planning, so that solutionsobtained from the full models are based on a schedule that may lead to a betteroverall bottom line.
Type:
text; Electronic Dissertation
Keywords:
optimization; airline scheduling; management science; enterprise planning
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Systems & Industrial Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Higle, Julia L.
Committee Chair:
Higle, Julia L.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleIntegrated Airline Planning Modelsen_US
dc.creatorJohnson, Anne Elizabeth Catlinen_US
dc.contributor.authorJohnson, Anne Elizabeth Catlinen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTechnological and industrial advances have resulted in the growth of large enterprises.Optimization models have been developed to increase the efficiency of partsof these systems, but models that optimize entire enterprises are frequently immenseand very complex to solve. Sequential solution techniques have resulted, which leadto useful, but not globally optimal, solutions. For example, airlines develop flightschedules based on strategic business objectives, and sequentially plan operationalprocesses to execute the schedule. Proven models that exist for the operationalsubproblems are solved sequentially, begin with a flight schedule, and allow limitedfeedback in the planning process. Since small changes to the individual parts haveproduced millions of dollars in improvement, an overall optimal solution could yielda significant increase in the airline's profit.We consider a modelling paradigm that moves toward integrated methods for theairline schedule planning phase using surrogate representations of the operationalproblems. In this context, surrogate models are relatively easy to solve, yet suffi-ciently representative of the operational problem to reflect its impact on schedulechoices. To illustrate, we develop surrogate models of maintenance scheduling, crewscheduling, and revenue generation. We solve the master schedule problem with eachsurrogate model using well-known decomposition techniques, and then combine thesurrogates into a single model that is readily decomposed into multiple subproblemsand solved.The model developments include additional considerations in constructing surrogatemodels. For example, to demonstrate validation of a surrogate's utility, wecompared the feasibility indications from the maintenance subproblem surrogate tothose from a larger, exact model of maintenance feasibility. The crew scheduling surrogatemodel development incorporates disruptions in the master schedule, drivingthe schedule to account for both crew costs and the impact of random disruptions.Finally, in the revenue management subproblem, we consider random demand thatimpacts a schedule's profitability.While surrogate solutions are inherently of little utility operationally, the resultsare useful for shaping the master schedule towards a global optimum. The paradigmallows for consideration of the subproblems in initial planning, so that solutionsobtained from the full models are based on a schedule that may lead to a betteroverall bottom line.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectoptimizationen_US
dc.subjectairline schedulingen_US
dc.subjectmanagement scienceen_US
dc.subjectenterprise planningen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSystems & Industrial Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHigle, Julia L.en_US
dc.contributor.chairHigle, Julia L.en_US
dc.contributor.committeememberHigle, Julia L.en_US
dc.contributor.committeememberSuvrajeet, Senen_US
dc.contributor.committeememberSmith, J. Coleen_US
dc.contributor.committeememberWright, Arthur L.en_US
dc.contributor.committeememberShaked, Mosheen_US
dc.identifier.proquest1089en_US
dc.identifier.oclc137353924en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.