Geostatistical analysis and inverse modeling of the upper Santa Cruz Basin, Arizona

Persistent Link:
http://hdl.handle.net/10150/191963
Title:
Geostatistical analysis and inverse modeling of the upper Santa Cruz Basin, Arizona
Author:
Williams, Derrik,1961-
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Data from the Upper Santa Cruz basin are analyzed to determine parameters for input into a groundwater model. The geostatistical interpolation and averaging technique of kriging are used to obtain prior estimates of log- transmissivity. These estimates are enhanced with specific-capacity data by means of regression and co-kriging. Parameters of the log- transmissivity semi-variogram model are improved using a maximum likelihood technique. Hydraulic head measurements are kriged in two ways, by universal kriging and by using an iterative generalized least squares method of semi-variogram and drift estimation. An inverse method for steady state conditions is used to estimate optimum transmissivity and mountain front recharge for modeling purposes. Input includes the prior transmissivity estimates, their covariance, and steady state head data. Results are judged on six criteria: (1) log-likelihood function, (2) head objective function, (3) mean weighted head residual, (4) mean squared weighted head residual, (5) residual coefficient of variation, and (6) a Chi-square fit. None of these criteria is sufficient to define a best estimate, but taken together, they point toward a possible optimum set of parameters.
Type:
Thesis-Reproduction (electronic); text
LCSH Subjects:
Hydrology.; Groundwater -- Santa Cruz River Watershed (Ariz. and Mexico) -- Mathematical models.; Groundwater flow -- Santa Cruz River Watershed (Ariz. and Mexico); Groundwater -- Arizona --Pima County -- Mathematical models.; Groundwater flow -- Arizona -- Pima County.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Neuman, Shlomo P.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleGeostatistical analysis and inverse modeling of the upper Santa Cruz Basin, Arizonaen_US
dc.creatorWilliams, Derrik,1961-en_US
dc.contributor.authorWilliams, Derrik,1961-en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractData from the Upper Santa Cruz basin are analyzed to determine parameters for input into a groundwater model. The geostatistical interpolation and averaging technique of kriging are used to obtain prior estimates of log- transmissivity. These estimates are enhanced with specific-capacity data by means of regression and co-kriging. Parameters of the log- transmissivity semi-variogram model are improved using a maximum likelihood technique. Hydraulic head measurements are kriged in two ways, by universal kriging and by using an iterative generalized least squares method of semi-variogram and drift estimation. An inverse method for steady state conditions is used to estimate optimum transmissivity and mountain front recharge for modeling purposes. Input includes the prior transmissivity estimates, their covariance, and steady state head data. Results are judged on six criteria: (1) log-likelihood function, (2) head objective function, (3) mean weighted head residual, (4) mean squared weighted head residual, (5) residual coefficient of variation, and (6) a Chi-square fit. None of these criteria is sufficient to define a best estimate, but taken together, they point toward a possible optimum set of parameters.en_US
dc.description.notehydrology collectionen_US
dc.typeThesis-Reproduction (electronic)en_US
dc.typetexten_US
dc.subject.lcshHydrology.en_US
dc.subject.lcshGroundwater -- Santa Cruz River Watershed (Ariz. and Mexico) -- Mathematical models.en_US
dc.subject.lcshGroundwater flow -- Santa Cruz River Watershed (Ariz. and Mexico)en_US
dc.subject.lcshGroundwater -- Arizona --Pima County -- Mathematical models.en_US
dc.subject.lcshGroundwater flow -- Arizona -- Pima County.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairNeuman, Shlomo P.en_US
dc.contributor.committeememberMaddock, Thomas R., IIIen_US
dc.contributor.committeememberYeh, Jimen_US
dc.identifier.oclc213332912en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.