Persistent Link:
http://hdl.handle.net/10150/191936
Title:
Sorption and desorption of volatile alkyl halides in a desert soil
Author:
Whitehead, Thomas William,1951-
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A series of twelve laboratory column experiments were conducted to determine equilibrium partitioning coefficients (K ) and kinetic rate coefficients for sorption of four hydrophobic pollutants on a low organic carbon natural soil. K 's for trichloroethene (ICE), tetrachloroethene (PCE), 1,1,1-trichloroethane (TCA), and 1,1,2,2-tetrachloroethane (PCA), were 0.17, 0.44, 0.06, and 0.05, respectively; about as expected based on empirical carbon-based partitioning equations found in the literature. Tailing of the breakthrough curves could be accounted for with a two-site non-equilibrium solute transport model. Rates were fast compared to pore water velocities normally encountered in an alluvial aquifer, but kinetic effects were observed at pore water velocities likely to be encountered during pumping, such as for site cleanup. Desorption was faster than adsorption, with forward rates of about 10⁻⁴ to 10⁻⁵ s⁻¹ and reverse rates about 10⁻³ to 10⁻⁴ s⁻¹. The two-site model indicated that slower sites constituted roughly half the total number of sites.
Type:
Thesis-Reproduction (electronic); text
LCSH Subjects:
Hydrology.; Ethanes -- Absorption and adsorption.; Desert soils -- Permeability.; Soil absorption and adsorption.; Halides.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Bales, Roger C.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSorption and desorption of volatile alkyl halides in a desert soilen_US
dc.creatorWhitehead, Thomas William,1951-en_US
dc.contributor.authorWhitehead, Thomas William,1951-en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA series of twelve laboratory column experiments were conducted to determine equilibrium partitioning coefficients (K ) and kinetic rate coefficients for sorption of four hydrophobic pollutants on a low organic carbon natural soil. K 's for trichloroethene (ICE), tetrachloroethene (PCE), 1,1,1-trichloroethane (TCA), and 1,1,2,2-tetrachloroethane (PCA), were 0.17, 0.44, 0.06, and 0.05, respectively; about as expected based on empirical carbon-based partitioning equations found in the literature. Tailing of the breakthrough curves could be accounted for with a two-site non-equilibrium solute transport model. Rates were fast compared to pore water velocities normally encountered in an alluvial aquifer, but kinetic effects were observed at pore water velocities likely to be encountered during pumping, such as for site cleanup. Desorption was faster than adsorption, with forward rates of about 10⁻⁴ to 10⁻⁵ s⁻¹ and reverse rates about 10⁻³ to 10⁻⁴ s⁻¹. The two-site model indicated that slower sites constituted roughly half the total number of sites.en_US
dc.description.notehydrology collectionen_US
dc.typeThesis-Reproduction (electronic)en_US
dc.typetexten_US
dc.subject.lcshHydrology.en_US
dc.subject.lcshEthanes -- Absorption and adsorption.en_US
dc.subject.lcshDesert soils -- Permeability.en_US
dc.subject.lcshSoil absorption and adsorption.en_US
dc.subject.lcshHalides.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairBales, Roger C.en_US
dc.identifier.oclc213340085en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.