Streamflow timing and estimation of infiltration rates in an ephemeral stream channel using variably saturated heat and fluid transport methods

Persistent Link:
http://hdl.handle.net/10150/191261
Title:
Streamflow timing and estimation of infiltration rates in an ephemeral stream channel using variably saturated heat and fluid transport methods
Author:
Blasch, Kyle William.
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Ephemeral streamflow infiltration through alluvial channels has been identified as an important source of aquifer replenishment in arid and semi-arid environments. In this dissertation, two field methods were developed for monitoring streamflow timing in ephemeral stream channels. The first streamflow timing method exploits differences in the advective and conductive thermal transport mechanisms during the presence and absence of streamflow. The second method of streamflow timing utilized the relationship between soil water content and electrical conductance. Electrical resistance sensors were designed to detect saturated soil conditions and thus to infer streamflow timing during periods of saturation. Both methods were field-tested in Rillito Creek, Tucson, Arizona. The electrical resistance method proved more suitable than the temperature method because it was not depth dependent and was able to more accurately infer streamflow timing with less data post processing. Transient and steady state infiltration fluxes were simulated in a coarse-grained alluvial channel to determine the relative contribution the onset of streamflow provides to potential recharge. Water content, temperature, and pore pressure measurements were incorporated into a variably saturated heat and fluid transport model to simulate infiltration. Infiltration fluxes at the onset of streamflow were about 2-3 orders of magnitude higher than steady state fluxes and were inversely proportional to antecedent water content. The time duration from the onset of streamflow to steady-state infiltration ranged from 1.8 to 20 hours. Two transient and steady state periods were observed indicating a lower permeable layer at depth. During steady state periods, infiltration fluxes averaged 0.33 meters per day and ranged from 0.14 to 0.45 meters per day. A long-term decline was observed in all three events. Higher frequency diurnal and episodic changes were prompted by fluctuations in atmospheric temperature and discharge. The simulated steady state values were consistent with the effective vertical conductivity values (0.22 meters per day) of an underlying less permeable layer. The average contribution from the cumulative transient infiltration for the events was approximately 18 percent. Therefore, it is apparent that potential recharge calculations for alluvial channels that do not consider infiltration during the onset transient period may underestimate the true potential for recharge.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Fluid dynamics -- Experiments.; Stream measurements -- Estimates.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Ferre, Paul A.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleStreamflow timing and estimation of infiltration rates in an ephemeral stream channel using variably saturated heat and fluid transport methodsen_US
dc.creatorBlasch, Kyle William.en_US
dc.contributor.authorBlasch, Kyle William.en_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractEphemeral streamflow infiltration through alluvial channels has been identified as an important source of aquifer replenishment in arid and semi-arid environments. In this dissertation, two field methods were developed for monitoring streamflow timing in ephemeral stream channels. The first streamflow timing method exploits differences in the advective and conductive thermal transport mechanisms during the presence and absence of streamflow. The second method of streamflow timing utilized the relationship between soil water content and electrical conductance. Electrical resistance sensors were designed to detect saturated soil conditions and thus to infer streamflow timing during periods of saturation. Both methods were field-tested in Rillito Creek, Tucson, Arizona. The electrical resistance method proved more suitable than the temperature method because it was not depth dependent and was able to more accurately infer streamflow timing with less data post processing. Transient and steady state infiltration fluxes were simulated in a coarse-grained alluvial channel to determine the relative contribution the onset of streamflow provides to potential recharge. Water content, temperature, and pore pressure measurements were incorporated into a variably saturated heat and fluid transport model to simulate infiltration. Infiltration fluxes at the onset of streamflow were about 2-3 orders of magnitude higher than steady state fluxes and were inversely proportional to antecedent water content. The time duration from the onset of streamflow to steady-state infiltration ranged from 1.8 to 20 hours. Two transient and steady state periods were observed indicating a lower permeable layer at depth. During steady state periods, infiltration fluxes averaged 0.33 meters per day and ranged from 0.14 to 0.45 meters per day. A long-term decline was observed in all three events. Higher frequency diurnal and episodic changes were prompted by fluctuations in atmospheric temperature and discharge. The simulated steady state values were consistent with the effective vertical conductivity values (0.22 meters per day) of an underlying less permeable layer. The average contribution from the cumulative transient infiltration for the events was approximately 18 percent. Therefore, it is apparent that potential recharge calculations for alluvial channels that do not consider infiltration during the onset transient period may underestimate the true potential for recharge.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectFluid dynamics -- Experiments.en_US
dc.subjectStream measurements -- Estimates.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairFerre, Paul A.en_US
dc.contributor.committeememberWarrick, Arthur W.en_US
dc.contributor.committeememberGoodrich, David C.en_US
dc.contributor.committeememberGuertin, Phillip D.en_US
dc.contributor.committeememberMash, Stuart E.en_US
dc.identifier.oclc226052051en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.