Nonlocal finite element solutions for steady state unsaturated flow in bounded randomly heterogeneous porous media using the Kirchhoff Transformation

Persistent Link:
http://hdl.handle.net/10150/191247
Title:
Nonlocal finite element solutions for steady state unsaturated flow in bounded randomly heterogeneous porous media using the Kirchhoff Transformation
Author:
Lu, Zhiming.
Issue Date:
2000
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We consider steady state unsaturated flow in bounded randomly heterogeneous soils under influence of random forcing terms. Our purpose is to predict pressure heads and fluxes and evaluate uncertainties associated with these predictions, without resorting to Monte Carlo simulation, upscaling or linearization of the constitutive relationship between unsaturated hydraulic conductivity and pressure head. Following Tartakovsky et al. [1999], by assuming that the Gardner model is valid and treating the corresponding exponent a as a random constant, the steady-state unsaturated flow equations can be linearized by means of the Kirchhoff transformation. This allows us develop exact integro-differential equations for the conditional first and second moments of transformed pressure head and flux. The conditional first moments are unbiased predictions of the transformed pressure head and flux, and the conditional second moments provide the variance and covariance associated with these predictions. The moment equations are exact, but they cannot be solved without closure approximations. We developed their recursive closure approximations through expansion in powers of σᵧ and σᵦ, the standard deviations of Y = lnK(s), and β = ln α, respectively, where K(s), is saturated hydraulic conductivity. Finally, we solve these recursive conditional moment equations to second-order in σᵧ and σᵦ, as well as second-order in standard deviations of forcing terms by finite element methods. Computational examples for unsaturated flow in a vertical plane, subject to deterministic forcing terms including a point source, show an excellent agreement between our nonlocal solutions and the Monte Carlo solution of the original stochastic equations using finite elements on the same grid, even for strongly heterogeneous soils.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Porous materials -- Fluid dynamics.; Finite element method.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Neuman, Shlomo P.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNonlocal finite element solutions for steady state unsaturated flow in bounded randomly heterogeneous porous media using the Kirchhoff Transformationen_US
dc.creatorLu, Zhiming.en_US
dc.contributor.authorLu, Zhiming.en_US
dc.date.issued2000en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe consider steady state unsaturated flow in bounded randomly heterogeneous soils under influence of random forcing terms. Our purpose is to predict pressure heads and fluxes and evaluate uncertainties associated with these predictions, without resorting to Monte Carlo simulation, upscaling or linearization of the constitutive relationship between unsaturated hydraulic conductivity and pressure head. Following Tartakovsky et al. [1999], by assuming that the Gardner model is valid and treating the corresponding exponent a as a random constant, the steady-state unsaturated flow equations can be linearized by means of the Kirchhoff transformation. This allows us develop exact integro-differential equations for the conditional first and second moments of transformed pressure head and flux. The conditional first moments are unbiased predictions of the transformed pressure head and flux, and the conditional second moments provide the variance and covariance associated with these predictions. The moment equations are exact, but they cannot be solved without closure approximations. We developed their recursive closure approximations through expansion in powers of σᵧ and σᵦ, the standard deviations of Y = lnK(s), and β = ln α, respectively, where K(s), is saturated hydraulic conductivity. Finally, we solve these recursive conditional moment equations to second-order in σᵧ and σᵦ, as well as second-order in standard deviations of forcing terms by finite element methods. Computational examples for unsaturated flow in a vertical plane, subject to deterministic forcing terms including a point source, show an excellent agreement between our nonlocal solutions and the Monte Carlo solution of the original stochastic equations using finite elements on the same grid, even for strongly heterogeneous soils.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectPorous materials -- Fluid dynamics.en_US
dc.subjectFinite element method.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairNeuman, Shlomo P.en_US
dc.contributor.committeememberGuadagnini, Albertoen_US
dc.contributor.committeememberWarrick, Arthur W.en_US
dc.contributor.committeememberEvans, Williamen_US
dc.contributor.committeememberDowney, Peter J.en_US
dc.identifier.oclc226048979en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.