Performance and simulation of chemically enhanced solubilization and removal of residual chlorinated solvents from porous media

Persistent Link:
http://hdl.handle.net/10150/191237
Title:
Performance and simulation of chemically enhanced solubilization and removal of residual chlorinated solvents from porous media
Author:
Boving, Thomas Bernhard.
Issue Date:
1999
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The work summarizes the results of a studies conducted with six different flushing agents, i.e. two anionic surfactants (SDS and DOWFAX 8390), two complexing agents (cyclodextrins), a humid acid, and an alcohol (ethanol), for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by these agents. These studies revealed that the solubility of TCE and PCE was enhanced significantly. Column experiments were conducted to compare water and agent-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results of these studies indicate that the total flushing volume necessary to remove the contaminant was reduced substantially in the presence of all applied agents. The relative effectiveness of the agents varied based on the method of evaluation. It was shown that a volatile contaminant, e.g. toluene, TCE, and PCE, can be separated from cyclodextrin solution by mean of air-sparging. The cyclodextrin solution was successfully reused for continuos flushing of a contaminated porous material. The simulation of selected experiments revealed that the mass transfer rate coefficients are generally increasing if evaluated based on the aqueous driving force approach. However, a relation based on the enhanced driving force approach was found to be less significant. Even though areas of additional research have been identified, this research contributes to a better understanding of the processes governing chemically enhance flushing of contaminated porous media.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Water -- Purification -- Evaluation.; Trichloroethylene -- Purification.; Solvents.; Organic compounds -- Solubility.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Brusseau, Mark L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titlePerformance and simulation of chemically enhanced solubilization and removal of residual chlorinated solvents from porous mediaen_US
dc.creatorBoving, Thomas Bernhard.en_US
dc.contributor.authorBoving, Thomas Bernhard.en_US
dc.date.issued1999en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe work summarizes the results of a studies conducted with six different flushing agents, i.e. two anionic surfactants (SDS and DOWFAX 8390), two complexing agents (cyclodextrins), a humid acid, and an alcohol (ethanol), for solubilizing and removing residual-phase immiscible liquid from porous media. Batch experiments were conducted to measure the degree of trichloroethene (TCE) and tetrachloroethene (PCE) solubilization induced by these agents. These studies revealed that the solubility of TCE and PCE was enhanced significantly. Column experiments were conducted to compare water and agent-enhanced flushing of Borden sand containing residual saturations of TCE and PCE. The results of these studies indicate that the total flushing volume necessary to remove the contaminant was reduced substantially in the presence of all applied agents. The relative effectiveness of the agents varied based on the method of evaluation. It was shown that a volatile contaminant, e.g. toluene, TCE, and PCE, can be separated from cyclodextrin solution by mean of air-sparging. The cyclodextrin solution was successfully reused for continuos flushing of a contaminated porous material. The simulation of selected experiments revealed that the mass transfer rate coefficients are generally increasing if evaluated based on the aqueous driving force approach. However, a relation based on the enhanced driving force approach was found to be less significant. Even though areas of additional research have been identified, this research contributes to a better understanding of the processes governing chemically enhance flushing of contaminated porous media.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectWater -- Purification -- Evaluation.en_US
dc.subjectTrichloroethylene -- Purification.en_US
dc.subjectSolvents.en_US
dc.subjectOrganic compounds -- Solubility.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairBrusseau, Mark L.en_US
dc.contributor.committeememberConklin, M.en_US
dc.contributor.committeememberYeh, T. C.en_US
dc.contributor.committeememberLong, A.en_US
dc.contributor.committeememberBaker, V.en_US
dc.identifier.oclc224495494en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.