The Application of time domain reflectometry in solute transport experiments

Persistent Link:
http://hdl.handle.net/10150/191226
Title:
The Application of time domain reflectometry in solute transport experiments
Author:
Yu, Chunming,1957-
Issue Date:
1998
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Contaminants can enter groundwater through the unsaturated zone as dissolved solutes. To predict the location and extent of these contaminants, transport parameters such as pore water velocity y and dispersion coefficient D are required. These parameters are often obtained through transport experiments. The goal of this study is to determine y and D using time domain reflectometry (TDR) technique. Using TDR for transport experiments under unsaturated conditions, we investigated the effects of volumetric water content θᵥ, distance of flow path, and draining-wetting history on D. TDR was used to measure θᵥ, and salt concentration in twenty-one unsaturated column experiments. The 105 cm-long column was homogeneously packed with silica sand (particle size: 53 to 425 pm). Ten TDR probes at ten depths were used to obtain in situ breakthrough curves and a chloride electrode was used to measure effluent breakthrough curves at the bottom of the column. A 35 mM NaC1 (sodium chloride) was used as the tracer with 20 mM NaC1 as background solution. We developed a three-parameter expression relating θᵥ, to measured dielectric constant Kₐ: θᵥ =aKₐᵅ + b. This calibration expression fits as closely or better than the "universal polynomial" and is also consistent with the well-known mixing model. For an isotropic soil with homogeneous water distribution, this expression is further simplified to two parameters by taking α = 0.5. The effects of temperature, porosity, soil solid and bound water can be taken into account by varying a and b of the two-parameter expression. TDR measurements have been shown to be sensitive to bound water and not particular sensitive to the other factors. To calculate y and D from breakthrough curves of step-input experiments, a new moment analysis method has been developed. The transport parameters obtained from this new method show a little difference from the parameters determined from the convection-dispersion equation using the CXTFIT model (a published computer program for estimating solute transport parameters from observed breakthrough curves). Our results demonstrated that D is dependent on measurement methods and concentrations of experimental solutions.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Soils -- Solute movement.; Time-domain reflectometry.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Conklin, Martha H.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe Application of time domain reflectometry in solute transport experimentsen_US
dc.creatorYu, Chunming,1957-en_US
dc.contributor.authorYu, Chunming,1957-en_US
dc.date.issued1998en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractContaminants can enter groundwater through the unsaturated zone as dissolved solutes. To predict the location and extent of these contaminants, transport parameters such as pore water velocity y and dispersion coefficient D are required. These parameters are often obtained through transport experiments. The goal of this study is to determine y and D using time domain reflectometry (TDR) technique. Using TDR for transport experiments under unsaturated conditions, we investigated the effects of volumetric water content θᵥ, distance of flow path, and draining-wetting history on D. TDR was used to measure θᵥ, and salt concentration in twenty-one unsaturated column experiments. The 105 cm-long column was homogeneously packed with silica sand (particle size: 53 to 425 pm). Ten TDR probes at ten depths were used to obtain in situ breakthrough curves and a chloride electrode was used to measure effluent breakthrough curves at the bottom of the column. A 35 mM NaC1 (sodium chloride) was used as the tracer with 20 mM NaC1 as background solution. We developed a three-parameter expression relating θᵥ, to measured dielectric constant Kₐ: θᵥ =aKₐᵅ + b. This calibration expression fits as closely or better than the "universal polynomial" and is also consistent with the well-known mixing model. For an isotropic soil with homogeneous water distribution, this expression is further simplified to two parameters by taking α = 0.5. The effects of temperature, porosity, soil solid and bound water can be taken into account by varying a and b of the two-parameter expression. TDR measurements have been shown to be sensitive to bound water and not particular sensitive to the other factors. To calculate y and D from breakthrough curves of step-input experiments, a new moment analysis method has been developed. The transport parameters obtained from this new method show a little difference from the parameters determined from the convection-dispersion equation using the CXTFIT model (a published computer program for estimating solute transport parameters from observed breakthrough curves). Our results demonstrated that D is dependent on measurement methods and concentrations of experimental solutions.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectSoils -- Solute movement.en_US
dc.subjectTime-domain reflectometry.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairConklin, Martha H.en_US
dc.contributor.committeememberWarrick, Arthur W.en_US
dc.contributor.committeememberBales, Roger C.en_US
dc.contributor.committeememberPost, Donald F.en_US
dc.contributor.committeememberZreda, Marek G.en_US
dc.identifier.oclc222001160en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.