Persistent Link:
http://hdl.handle.net/10150/191203
Title:
Soil Albedo in Relation to Soil Color, Moisture and Roughness.
Author:
Fontes, Adan Fimbres,1953-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Land surface albedo is the ratio of reflected to incident solar radiation. It is a function of several surface parameters including soil color, moisture, roughness and vegetation cover. A better understanding of albedo and how it changes in relation to variations in these parameters is important in order to help improve our ability to model the effects of land surface modifications on climate. The objectives of this study were 1) To determine empirical relationships between smooth bare soil albedo and soil color, 2) To develop statistical relationships between albedo and ground-based thematic mapper (TM) measurements of spectral reflectances, 3) To determine how increased surface roughness caused by tillage reduces bare soil albedo and 4) To empirically relate albedo with TM data and other physical characteristics of mixed grass/shrubland sites at Walnut Gulch Watershed. Albedos, colors and spectral reflectances were measured by Eppley pyranometer, Chroma Meter CR-200 and a Spectron SE-590, respectively. Measurements were made on two field soils (Gila and Pima) at the Campus Agricultural Center (CAC), Tucson, AZ. Soil surface roughness was measured by a profile meter developed by the USDA/ARS. Additional measurements were made at the Maricopa Agricultural Center (MAC) for statistical model testing. Albedos of the 15 smooth, bare soils (plus silica sand) were determined by linear regression to be highly correlated (r²=0.93, p>0.01) with color values for both wet and dry soil conditions. Albedos of the same smooth bare soils were also highly correlated (r²≥0.86, p>0.01) with spectral reflectances. Testing of the linear regression equations relating albedo to soil color and spectral reflectances using the data from MAC showed a high correlation. A general nonlinear relationship given by y=8.3661n(x)+37.802 r²=0.71 was determined between percent reduction in albedo (y) and surface roughness index (x) for wet and dry Pima and Gila field soils. Measurements of albedo, color and spectral reflectance at the Walnut Gulch Watershed indicated that albedo values were highly correlated with percent rock & gravel, color value and reflectance data (TM bands 1-4).
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Soil moisture.; Water.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Soil, Water and Environmental Science; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Matthias, Allan; Post, Donald

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSoil Albedo in Relation to Soil Color, Moisture and Roughness.en_US
dc.creatorFontes, Adan Fimbres,1953-en_US
dc.contributor.authorFontes, Adan Fimbres,1953-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractLand surface albedo is the ratio of reflected to incident solar radiation. It is a function of several surface parameters including soil color, moisture, roughness and vegetation cover. A better understanding of albedo and how it changes in relation to variations in these parameters is important in order to help improve our ability to model the effects of land surface modifications on climate. The objectives of this study were 1) To determine empirical relationships between smooth bare soil albedo and soil color, 2) To develop statistical relationships between albedo and ground-based thematic mapper (TM) measurements of spectral reflectances, 3) To determine how increased surface roughness caused by tillage reduces bare soil albedo and 4) To empirically relate albedo with TM data and other physical characteristics of mixed grass/shrubland sites at Walnut Gulch Watershed. Albedos, colors and spectral reflectances were measured by Eppley pyranometer, Chroma Meter CR-200 and a Spectron SE-590, respectively. Measurements were made on two field soils (Gila and Pima) at the Campus Agricultural Center (CAC), Tucson, AZ. Soil surface roughness was measured by a profile meter developed by the USDA/ARS. Additional measurements were made at the Maricopa Agricultural Center (MAC) for statistical model testing. Albedos of the 15 smooth, bare soils (plus silica sand) were determined by linear regression to be highly correlated (r²=0.93, p>0.01) with color values for both wet and dry soil conditions. Albedos of the same smooth bare soils were also highly correlated (r²≥0.86, p>0.01) with spectral reflectances. Testing of the linear regression equations relating albedo to soil color and spectral reflectances using the data from MAC showed a high correlation. A general nonlinear relationship given by y=8.3661n(x)+37.802 r²=0.71 was determined between percent reduction in albedo (y) and surface roughness index (x) for wet and dry Pima and Gila field soils. Measurements of albedo, color and spectral reflectance at the Walnut Gulch Watershed indicated that albedo values were highly correlated with percent rock & gravel, color value and reflectance data (TM bands 1-4).en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectSoil moisture.en_US
dc.subjectWater.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil, Water and Environmental Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairMatthias, Allanen_US
dc.contributor.chairPost, Donalden_US
dc.identifier.oclc221692047en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.