Recharge characteristics of an effluent dominated stream near Tucson, Arizona

Persistent Link:
http://hdl.handle.net/10150/191199
Title:
Recharge characteristics of an effluent dominated stream near Tucson, Arizona
Author:
Lacher, Laurel Jane,1964-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Almost 90% of the treated sewage effluent processed by the two treatment plants serving the greater Tucson area is available for passive recharge through the Santa Cruz River streambed north of Tucson. In the absence of any major disturbance of the effluent channel, the recharge capacity of the streambed materials decreases over time as microbial activity, and possibly suspended sediments settling out of solution, act to clog the surficial sediments under the effluent stream. Effluent stream transmission-loss measurements made over the period from November 1994 to August 1995 provided data used to determine the average vertical hydraulic conductivity of the low-flow channel in the study reach through simulations using the computer model known as KINEROS2. Saturated hydraulic conductivity (KSAT) served as the calibration parameter in the model. The appropriate KSAT value was chosen for each set of field data by matching the observed and simulated downstream hydrographs for the study reach. KSAT values were corrected for viscosity changes resulting from changing average daily surface water temperatures over the study period. Saturated hydraulic conductivity values for the effluent stream channel ranged from a maximum of 37 mm/hr in January, 1995, following several major winter storms, to a minimum of 11 mm/hr in August, 1995, after a nearly six-month interstorm period. The saturated hydraulic conductivity values decay exponentially with time after the last major winter storm. The mathematical model describing this decay may be used to estimate effluent recharge rates under similar future meteorological and climatological conditions.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Groundwater recharge -- Arizona -- Tucson.; Sewage Environmental aspects -- Arizona -- Pima County.; Sewage disposal in rivers, lakes, etc. -- Santa Cruz River (Ariz. and Mexico)
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Maddock, Thomas

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleRecharge characteristics of an effluent dominated stream near Tucson, Arizonaen_US
dc.creatorLacher, Laurel Jane,1964-en_US
dc.contributor.authorLacher, Laurel Jane,1964-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAlmost 90% of the treated sewage effluent processed by the two treatment plants serving the greater Tucson area is available for passive recharge through the Santa Cruz River streambed north of Tucson. In the absence of any major disturbance of the effluent channel, the recharge capacity of the streambed materials decreases over time as microbial activity, and possibly suspended sediments settling out of solution, act to clog the surficial sediments under the effluent stream. Effluent stream transmission-loss measurements made over the period from November 1994 to August 1995 provided data used to determine the average vertical hydraulic conductivity of the low-flow channel in the study reach through simulations using the computer model known as KINEROS2. Saturated hydraulic conductivity (KSAT) served as the calibration parameter in the model. The appropriate KSAT value was chosen for each set of field data by matching the observed and simulated downstream hydrographs for the study reach. KSAT values were corrected for viscosity changes resulting from changing average daily surface water temperatures over the study period. Saturated hydraulic conductivity values for the effluent stream channel ranged from a maximum of 37 mm/hr in January, 1995, following several major winter storms, to a minimum of 11 mm/hr in August, 1995, after a nearly six-month interstorm period. The saturated hydraulic conductivity values decay exponentially with time after the last major winter storm. The mathematical model describing this decay may be used to estimate effluent recharge rates under similar future meteorological and climatological conditions.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectGroundwater recharge -- Arizona -- Tucson.en_US
dc.subjectSewage Environmental aspects -- Arizona -- Pima County.en_US
dc.subjectSewage disposal in rivers, lakes, etc. -- Santa Cruz River (Ariz. and Mexico)en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairMaddock, Thomasen_US
dc.contributor.committeememberGoodrich, Daviden_US
dc.contributor.committeememberMac Nish, Roberten_US
dc.contributor.committeememberWilson, Lorne Grayen_US
dc.contributor.committeememberHirschboeck, Katherineen_US
dc.contributor.committeememberBaker, Victoren_US
dc.identifier.oclc223507031en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.