Persistent Link:
http://hdl.handle.net/10150/191173
Title:
Optimizing water and nitrogen inputs for trickle irrigated melons
Author:
Pier, Jerome William,1960-
Issue Date:
1992
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Rising water costs and concern for groundwater contamination are forcing melon growers to improve irrigation and nitrogen fertilization efficiency. The research objectives were: 1) to determine quantities of nitrogen and water applied through a subsurface drip irrigation system to cantaloupe and watermelon which would optimize fruit yield while minimizing losses of nitrogen and; 2) to develop specific monitoring techniques for assessing the water and nitrogen status of melon crops throughout the growing season. Four years of field research were conducted from 1988 to 1991 at the University of Arizona Maricopa Agricultural Center, Maricopa, AZ. The first two years of research determined which varieties of cantaloupe and watermelon would grow best under drip irrigation and the feasibility of using plant tissue tests to aid in N fertilizer scheduling. The last two years of research used a factorial design with levels of N and target soil water tension to determine response surfaces for fruit yield and net return. Information from tensiometers was used to schedule irrigations. Watermelon petiole nitrate levels at critical growth stages were used to recommend application rates of nitrogen fertilizer. In 1991, an N difference method was used to estimate N which was unaccounted for in this watermelon cropping system. Petiole nitrate levels were highly responsive to N fertilizer treatments and accurately quantified visual observations of crop N status. Petiole nitrate results also indicated that preliminary nitrogen fertilizer management guidelines using a tissue nitrate test was reasonably accurate in predicting optimum nitrogen 'management. Market able yield showed a soil water tension by N interaction. Maximum marketable yield was estimated to be 101 Mg ha⁻¹ at 7.2 kPa tension and 336 kg of applied N ha⁻¹. Maximum net return was estimated to be $8 250 ha⁻¹ when average soil water tension was 10.6 kPa and applied N was 243 kg N ha⁻¹. Unaccountable N was estimated to be 300 kg N ha⁻¹ when N rates were 500 kg ha⁻¹ and average soil water tension was 4 kPa. A response surface was estimated through the transformation and summation of yield, net return and unaccounted for N response variables. The optimum average soil water tension and rate of applied N were 12.6 kPa and 181 kg N ha⁻¹, respectively.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Water -- Arizona.; Nitrogen.; Irrigation.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Soil and Water Science; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Warrick, Arthur W.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOptimizing water and nitrogen inputs for trickle irrigated melonsen_US
dc.creatorPier, Jerome William,1960-en_US
dc.contributor.authorPier, Jerome William,1960-en_US
dc.date.issued1992en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractRising water costs and concern for groundwater contamination are forcing melon growers to improve irrigation and nitrogen fertilization efficiency. The research objectives were: 1) to determine quantities of nitrogen and water applied through a subsurface drip irrigation system to cantaloupe and watermelon which would optimize fruit yield while minimizing losses of nitrogen and; 2) to develop specific monitoring techniques for assessing the water and nitrogen status of melon crops throughout the growing season. Four years of field research were conducted from 1988 to 1991 at the University of Arizona Maricopa Agricultural Center, Maricopa, AZ. The first two years of research determined which varieties of cantaloupe and watermelon would grow best under drip irrigation and the feasibility of using plant tissue tests to aid in N fertilizer scheduling. The last two years of research used a factorial design with levels of N and target soil water tension to determine response surfaces for fruit yield and net return. Information from tensiometers was used to schedule irrigations. Watermelon petiole nitrate levels at critical growth stages were used to recommend application rates of nitrogen fertilizer. In 1991, an N difference method was used to estimate N which was unaccounted for in this watermelon cropping system. Petiole nitrate levels were highly responsive to N fertilizer treatments and accurately quantified visual observations of crop N status. Petiole nitrate results also indicated that preliminary nitrogen fertilizer management guidelines using a tissue nitrate test was reasonably accurate in predicting optimum nitrogen 'management. Market able yield showed a soil water tension by N interaction. Maximum marketable yield was estimated to be 101 Mg ha⁻¹ at 7.2 kPa tension and 336 kg of applied N ha⁻¹. Maximum net return was estimated to be $8 250 ha⁻¹ when average soil water tension was 10.6 kPa and applied N was 243 kg N ha⁻¹. Unaccountable N was estimated to be 300 kg N ha⁻¹ when N rates were 500 kg ha⁻¹ and average soil water tension was 4 kPa. A response surface was estimated through the transformation and summation of yield, net return and unaccounted for N response variables. The optimum average soil water tension and rate of applied N were 12.6 kPa and 181 kg N ha⁻¹, respectively.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectWater -- Arizona.en_US
dc.subjectNitrogen.en_US
dc.subjectIrrigation.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil and Water Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairWarrick, Arthur W.en_US
dc.contributor.committeememberThompson, Thomas L.en_US
dc.contributor.committeememberStroehlien, Jack L.en_US
dc.identifier.oclc228030381en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.