Economic impacts of salinization in irrigated agricultural land : an Arizona case study

Persistent Link:
http://hdl.handle.net/10150/191135
Title:
Economic impacts of salinization in irrigated agricultural land : an Arizona case study
Author:
Mayorga, Maria Irles,1943-
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The dynamics of salt accumulation in the soil over time is one of major important information input needed for decision-making in regard to irrigate with saline water. As all waters contain some dissolved salts, during the irrigation these salts tend to concentrate in the soil causing depressed plant growth. Saline irrigation water, low soil permeability, inadequate drainage conditions, low rainfall and poor irrigation management all contribute to the tendency of salt accumulation in the soil. The principal salt accumulation problem of economic importance arises when non-saline soils become saline as result of irrigation. The dynamics of salt accumulation in this study, is based on the model for tracing salt distribution in the soil affected by the quantity and quality of irrigation water, amount of nitrogen and initial soil salinity. To verify the model for tracing salt distribution in the soil and to statistically estimate a crop-production function and soil salinity relation, agronomic data were used from field experiment conducted at the University of Arizona, Maricopa Agricultural Center (MAC), during the 1985 growing season and that utilized cotton variety Delta Pine 61. From the point of view of the response functions and salt accumulation in the soil, many assumptions were made before formulating the models. Results show that (1) no conclusions could be drawn with respect to the model of salt accumulation in the soil, (2) in the case of yield production function and soil salinity relation, the water quantity coeffient had an absolute value greater than one, (3) water quality and nitrogen coefficients had an absolute value less than one, (4) initial soil salinity coefficient had negative value, (5) looking for the best combination amoung the variables inputs, the marginal rate of substitution was greater than the ratio of prices, (6) the time path for soil salinity converge to a steady state conditions, and (7) the profitability of cotton irrigated with drip system is sensitive to yield increases and increases in the price of cotton.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Irrigation farming -- Economic aspects -- Arizona -- Maricopa County.; Soil salinization -- Economic aspects -- Arizona -- Maricopa County.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Renewable Natural Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Ffolliott, Peter F.; Fox, Roger

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEconomic impacts of salinization in irrigated agricultural land : an Arizona case studyen_US
dc.creatorMayorga, Maria Irles,1943-en_US
dc.contributor.authorMayorga, Maria Irles,1943-en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe dynamics of salt accumulation in the soil over time is one of major important information input needed for decision-making in regard to irrigate with saline water. As all waters contain some dissolved salts, during the irrigation these salts tend to concentrate in the soil causing depressed plant growth. Saline irrigation water, low soil permeability, inadequate drainage conditions, low rainfall and poor irrigation management all contribute to the tendency of salt accumulation in the soil. The principal salt accumulation problem of economic importance arises when non-saline soils become saline as result of irrigation. The dynamics of salt accumulation in this study, is based on the model for tracing salt distribution in the soil affected by the quantity and quality of irrigation water, amount of nitrogen and initial soil salinity. To verify the model for tracing salt distribution in the soil and to statistically estimate a crop-production function and soil salinity relation, agronomic data were used from field experiment conducted at the University of Arizona, Maricopa Agricultural Center (MAC), during the 1985 growing season and that utilized cotton variety Delta Pine 61. From the point of view of the response functions and salt accumulation in the soil, many assumptions were made before formulating the models. Results show that (1) no conclusions could be drawn with respect to the model of salt accumulation in the soil, (2) in the case of yield production function and soil salinity relation, the water quantity coeffient had an absolute value greater than one, (3) water quality and nitrogen coefficients had an absolute value less than one, (4) initial soil salinity coefficient had negative value, (5) looking for the best combination amoung the variables inputs, the marginal rate of substitution was greater than the ratio of prices, (6) the time path for soil salinity converge to a steady state conditions, and (7) the profitability of cotton irrigated with drip system is sensitive to yield increases and increases in the price of cotton.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectIrrigation farming -- Economic aspects -- Arizona -- Maricopa County.en_US
dc.subjectSoil salinization -- Economic aspects -- Arizona -- Maricopa County.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineRenewable Natural Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairFfolliott, Peter F.en_US
dc.contributor.chairFox, Rogeren_US
dc.contributor.committeememberFogel, Martin M.en_US
dc.contributor.committeememberLehman, Gordon S.en_US
dc.identifier.oclc213332488en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.