Effect of water stress on the physiology, growth, and morphology of three pearl millet genotypes

Persistent Link:
http://hdl.handle.net/10150/191132
Title:
Effect of water stress on the physiology, growth, and morphology of three pearl millet genotypes
Author:
Osman, Mohammed A.
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A pearl millet hybrid (Pennisetum americanum (L.) Leeke) and its two parents were evaluated for their photosynthetic rates, diffusive resistance, canopy temperature, transpiration rates, stomatal aperture and frequency, and growth responses to various irrigation levels. The experiments were conducted on Brazito sandy loam soil at The University of Arizona Campus Agricultural Center, Tucson, AZ in 1985 and 1986. A sprinkler was used to create water treatments. Photosynthetic rates were not significantly different among genotypes at each water level. Transpiration rate, diffusive resistance, canopy minus ambient temperature, and photosynthetic rate were all significantly related to water treatments with correlation coefficients .ranging from 0.91 to 0.98. Under water stress, the female transpired more, exhibited lower diffusive resistance and had a cooler canopy compared to the hybrid and male parent. Based on these characteristics, the female seemed to expend more energy on heat dissipation than yield improvement. Water stress reduced stomatal aperture but increased stomata! frequency. The hybrid had significantly higher stomatal frequency at all water levels and smaller aperture between 63 and 125 mm irrigation levels. Dry matter, leaf area, leaf area index, and plant height were also reduced by water stress. In general, the hybrid and the male parent produced significantly more dry matter and were significantly taller than the female. The female parent had significantly higher leaf area and leaf area index late in 1986. Grain yield was reduced by water stress. Both years, the female grown under optimum moisture conditions had approximately half the grain yield as compared to the male and the hybrid. The major components contributing to the higher grain yield of the hybrid and male were larger panicles and more productive tillers.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Pearl millet -- Irrigation.; Crops and water.; Plant-water relationships.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Plant Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Dobrenz, Albert K.; Hofmann, Wallace G.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEffect of water stress on the physiology, growth, and morphology of three pearl millet genotypesen_US
dc.creatorOsman, Mohammed A.en_US
dc.contributor.authorOsman, Mohammed A.en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA pearl millet hybrid (Pennisetum americanum (L.) Leeke) and its two parents were evaluated for their photosynthetic rates, diffusive resistance, canopy temperature, transpiration rates, stomatal aperture and frequency, and growth responses to various irrigation levels. The experiments were conducted on Brazito sandy loam soil at The University of Arizona Campus Agricultural Center, Tucson, AZ in 1985 and 1986. A sprinkler was used to create water treatments. Photosynthetic rates were not significantly different among genotypes at each water level. Transpiration rate, diffusive resistance, canopy minus ambient temperature, and photosynthetic rate were all significantly related to water treatments with correlation coefficients .ranging from 0.91 to 0.98. Under water stress, the female transpired more, exhibited lower diffusive resistance and had a cooler canopy compared to the hybrid and male parent. Based on these characteristics, the female seemed to expend more energy on heat dissipation than yield improvement. Water stress reduced stomatal aperture but increased stomata! frequency. The hybrid had significantly higher stomatal frequency at all water levels and smaller aperture between 63 and 125 mm irrigation levels. Dry matter, leaf area, leaf area index, and plant height were also reduced by water stress. In general, the hybrid and the male parent produced significantly more dry matter and were significantly taller than the female. The female parent had significantly higher leaf area and leaf area index late in 1986. Grain yield was reduced by water stress. Both years, the female grown under optimum moisture conditions had approximately half the grain yield as compared to the male and the hybrid. The major components contributing to the higher grain yield of the hybrid and male were larger panicles and more productive tillers.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectPearl millet -- Irrigation.en_US
dc.subjectCrops and water.en_US
dc.subjectPlant-water relationships.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairDobrenz, Albert K.en_US
dc.contributor.chairHofmann, Wallace G.en_US
dc.contributor.committeememberBriggs, Robert E.en_US
dc.contributor.committeememberMatsuda, Kaoruen_US
dc.contributor.committeememberBartels, Paul G.en_US
dc.identifier.oclc213442568en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.