Computerized water distribution management for the Upper Pampanga River Project, Philippines

Persistent Link:
http://hdl.handle.net/10150/191037
Title:
Computerized water distribution management for the Upper Pampanga River Project, Philippines
Author:
Aldovino, Lino Pineda,1945-
Issue Date:
1977
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This study is concerned with the development of a model for realtime water distribution management for rice crop production in the Upper Pampanga River Project (Philippines). The model utilizes a management technique which considers water distribution at the farm level on a system-wide basis under the constraints of the present users and the physical system situations. The intent of the project is to rely as much as possible on the available uncontrolled streamflows and rainfall during the wet season in order to minimize releases from the Pantabangan reservoir, and thus conserve most of the impounded water for irrigation during the dry season. A computerized model which incorporates a parameter prediction-correction technique is developed for calculating the daily water scheduling for the entire canal network of the UPRP. To determine how much water is needed, a daily water budget at each of the 2,216 rotation areas is performed in conjunction with the daily predicted uncontrolled streamflows, rainfall, varying water requirement, and water status at the farm level. Subsequent delivery correction schedules are determined based on the degree of the prediction error. Studies were conducted for the determination of the appropriate rainfall prediction scheme used in the scheduling model. Selection of the scheme was done through simulation of field operations at the farm level and by the application of the rainfall-use efficiency criterion. Time lags along the Pampanga River and the canal network were analyzed to determine the possibility of supplying the entire network from the Pantabangan Dam within 24 hours. The idealized solution of the problem of inequitable distribution of water within a rotation unit is also presented. The ability of the model to provide situation-and-user-oriented guidelines for water distribution activities is demonstrated.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Water resources development -- Philippines.; Irrigation water.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Ince, Simon; Roefs, Theodore G.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleComputerized water distribution management for the Upper Pampanga River Project, Philippinesen_US
dc.creatorAldovino, Lino Pineda,1945-en_US
dc.contributor.authorAldovino, Lino Pineda,1945-en_US
dc.date.issued1977en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis study is concerned with the development of a model for realtime water distribution management for rice crop production in the Upper Pampanga River Project (Philippines). The model utilizes a management technique which considers water distribution at the farm level on a system-wide basis under the constraints of the present users and the physical system situations. The intent of the project is to rely as much as possible on the available uncontrolled streamflows and rainfall during the wet season in order to minimize releases from the Pantabangan reservoir, and thus conserve most of the impounded water for irrigation during the dry season. A computerized model which incorporates a parameter prediction-correction technique is developed for calculating the daily water scheduling for the entire canal network of the UPRP. To determine how much water is needed, a daily water budget at each of the 2,216 rotation areas is performed in conjunction with the daily predicted uncontrolled streamflows, rainfall, varying water requirement, and water status at the farm level. Subsequent delivery correction schedules are determined based on the degree of the prediction error. Studies were conducted for the determination of the appropriate rainfall prediction scheme used in the scheduling model. Selection of the scheme was done through simulation of field operations at the farm level and by the application of the rainfall-use efficiency criterion. Time lags along the Pampanga River and the canal network were analyzed to determine the possibility of supplying the entire network from the Pantabangan Dam within 24 hours. The idealized solution of the problem of inequitable distribution of water within a rotation unit is also presented. The ability of the model to provide situation-and-user-oriented guidelines for water distribution activities is demonstrated.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectWater resources development -- Philippines.en_US
dc.subjectIrrigation water.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairInce, Simonen_US
dc.contributor.chairRoefs, Theodore G.en_US
dc.contributor.committeememberBradley, Michael D.en_US
dc.contributor.committeememberHarshbarger, John W.en_US
dc.contributor.committeememberFangmeier, Delmar D.en_US
dc.identifier.oclc212782165en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.