Design of water resources systems in developing countries : the lower Mekong Basin.

Persistent Link:
http://hdl.handle.net/10150/190995
Title:
Design of water resources systems in developing countries : the lower Mekong Basin.
Author:
Chaemsaithong, Kanchit,1940-
Issue Date:
1973
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This study focuses on the design of water resources systems in developing nations with particular reference to the development of water resources in the Lower Mekong Basin (Khmer Republic, Laos, Thailand, and Republic of South Viet-Nam). The determination of the "best" system in terms of social goals reflecting the economic and social environment of the Mekong countries is the main issue of this dissertation. The imperfection of the usual technique for planning water resources systems, namely, cost-benefit analysis, leads to the use of the standardized cost-effectiveness methodology. To illustrate how the design is accomplished, two distinctly different structural alternatives of possible development in the Lower Mekong Basin are defined. The design process starts from the statements of goals or objectives of water resources development, which are then mapped onto specifications sets in which social needs are represented. Next, the capabilities of alternative systems are determined through simulation in which three 50-year sequences of synthetic streamflow are generated by a first order autoregressive scheme. The two alternatives are then compared using both quantitative and qualitative criteria. To illustrate how a decision in selecting an alternative system could be reached, ranking of criteria by order of preference is demonstrated. With the choice of either a fixed-cost or fixed-effectiveness approach, the decision to select the best alternative system could be made. At this point, the use of a weighting technique, which is a common fallacy of systems analysis, will be automatically eliminated. The study emphasizes that a systematic design procedure of water resources systems is provided by the standardized cost-effectiveness approach, which possesses several advantages. The approach will suggest and help identify the system closest to meeting the desired economic and social goals of the developing countries in the Lower Mekong Basin. In this connection, the approach will help governments in the preparation of programming and budgeting of capital for further investigations and investments. It is believed that the approach will eliminate unnecessary expenses in projects that are planned on an individual basis or by methods used at present. Further, the approach provides an appropriate mechanism for generating essential information in the decision process. Both quantifiable and non-quantifiable criteria are fully considered. The choice of a fixed-cost or fixed-effectiveness approach will determine the trade-off between these criteria. The study recognizes that research to determine appropriate hydrologic models for monthly streamflow generation for tributary projects in the Basin is necessary. This leads to another important area of research which is to find the appropriate number of monthly sequences of streamflow to be generated in relation to number of states and decision variables. Research on the design of computer experiments is necessary to improve simulation as a tool to estimate the quantitative effects of a given project.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Water resources development -- Southeast Asia.; Water resources development -- Mekong River Watershed.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Hydrology and Water Resources; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Kisiel, Chester C.; Duckstein, Lucien

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDesign of water resources systems in developing countries : the lower Mekong Basin.en_US
dc.creatorChaemsaithong, Kanchit,1940-en_US
dc.contributor.authorChaemsaithong, Kanchit,1940-en_US
dc.date.issued1973en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis study focuses on the design of water resources systems in developing nations with particular reference to the development of water resources in the Lower Mekong Basin (Khmer Republic, Laos, Thailand, and Republic of South Viet-Nam). The determination of the "best" system in terms of social goals reflecting the economic and social environment of the Mekong countries is the main issue of this dissertation. The imperfection of the usual technique for planning water resources systems, namely, cost-benefit analysis, leads to the use of the standardized cost-effectiveness methodology. To illustrate how the design is accomplished, two distinctly different structural alternatives of possible development in the Lower Mekong Basin are defined. The design process starts from the statements of goals or objectives of water resources development, which are then mapped onto specifications sets in which social needs are represented. Next, the capabilities of alternative systems are determined through simulation in which three 50-year sequences of synthetic streamflow are generated by a first order autoregressive scheme. The two alternatives are then compared using both quantitative and qualitative criteria. To illustrate how a decision in selecting an alternative system could be reached, ranking of criteria by order of preference is demonstrated. With the choice of either a fixed-cost or fixed-effectiveness approach, the decision to select the best alternative system could be made. At this point, the use of a weighting technique, which is a common fallacy of systems analysis, will be automatically eliminated. The study emphasizes that a systematic design procedure of water resources systems is provided by the standardized cost-effectiveness approach, which possesses several advantages. The approach will suggest and help identify the system closest to meeting the desired economic and social goals of the developing countries in the Lower Mekong Basin. In this connection, the approach will help governments in the preparation of programming and budgeting of capital for further investigations and investments. It is believed that the approach will eliminate unnecessary expenses in projects that are planned on an individual basis or by methods used at present. Further, the approach provides an appropriate mechanism for generating essential information in the decision process. Both quantifiable and non-quantifiable criteria are fully considered. The choice of a fixed-cost or fixed-effectiveness approach will determine the trade-off between these criteria. The study recognizes that research to determine appropriate hydrologic models for monthly streamflow generation for tributary projects in the Basin is necessary. This leads to another important area of research which is to find the appropriate number of monthly sequences of streamflow to be generated in relation to number of states and decision variables. Research on the design of computer experiments is necessary to improve simulation as a tool to estimate the quantitative effects of a given project.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectWater resources development -- Southeast Asia.en_US
dc.subjectWater resources development -- Mekong River Watershed.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairKisiel, Chester C.en_US
dc.contributor.chairDuckstein, Lucienen_US
dc.contributor.committeememberDavis, Donald R.en_US
dc.contributor.committeememberInce, Simonen_US
dc.contributor.committeememberEvans, Daniel D.en_US
dc.identifier.oclc213095123en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.