Persistent Link:
http://hdl.handle.net/10150/190959
Title:
Geology and hydrology of the Roswell Artesian basin, New Mexico.
Author:
Maddox, George Edward,1926-
Issue Date:
1969
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Three aquifers of diverse lithology and hydraulic character form the ground-water reservoir in the Roswell basin. The main aquifer, the carbonate aquifer, is developed in carbonate rocks of Permian age. It is the source of about two-thirds of the ground water pumped in the basin and receives more than 90 percent of the recharge to the basin. The second most important aquifer is the shallow aquifer which lies near the Pecos River in beds of sand and gravel of both Permian and Holocene age. About one-third of the ground water pumped in the basin comes from the shallow aquifer. Prior to pumping, the main source of recharge to the shallow aquifer was probably ground water leaking upward from the carbonate aquifer. Since pumping began, the main source of recharge to the shallow aquifer is probably return flow of irrigation water pumped from the carbonate aquifer. Natural discharge of ground water from the shallow aquifer into the Pecos River causes a gain in th.e base flow of the Pecos River in the Roswell basin. The third aquifer, the shallow-artesian aquifer, is in red beds and evaporite beds of Permian age. This aquifer overlies the carbonate aquifer and underlies the shallow aquifer. The shallow-artesian aquifer acts as a minor aquifer and also as a semi-permeable unit which partly confines ground water in the carbonate aquifer. Vertical permeability of the shallow-artesian aquifer is variable and depends on the lithology and thickness of the aquifer. Hydraulic head in the shallow-artesian aquifer also varies quite widely depending on the depth to which a well penetrates the aquifer. All ground-water aquifers in the basin transect formational boundaries and are therefore not closely related to the named geologic formations. A flow net analysis of the carbonate aquifer and of the shallow aquifer imply that geologic structure is important in the movement of ground water in the basin by limiting the transmissivity of the shallow and carbonate aquifers, by forming the present pattern of surface water drainage, and possibly by the contamination of fresh ground water by highly saline ground water. The flow net analysis also shows areas of recharge to the shallow and carbonate aquifers, and areas where the carbonate aquifer looses water to the shallow-artesian aquifer and to the shallow aquifer.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Geology -- New Mexico -- Roswell Basin.; Groundwater -- New Mexico -- Roswell Basin.; Artesian basins -- New Mexico -- Roswell Basin.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Mining and Geological Engineering; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleGeology and hydrology of the Roswell Artesian basin, New Mexico.en_US
dc.creatorMaddox, George Edward,1926-en_US
dc.contributor.authorMaddox, George Edward,1926-en_US
dc.date.issued1969en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThree aquifers of diverse lithology and hydraulic character form the ground-water reservoir in the Roswell basin. The main aquifer, the carbonate aquifer, is developed in carbonate rocks of Permian age. It is the source of about two-thirds of the ground water pumped in the basin and receives more than 90 percent of the recharge to the basin. The second most important aquifer is the shallow aquifer which lies near the Pecos River in beds of sand and gravel of both Permian and Holocene age. About one-third of the ground water pumped in the basin comes from the shallow aquifer. Prior to pumping, the main source of recharge to the shallow aquifer was probably ground water leaking upward from the carbonate aquifer. Since pumping began, the main source of recharge to the shallow aquifer is probably return flow of irrigation water pumped from the carbonate aquifer. Natural discharge of ground water from the shallow aquifer into the Pecos River causes a gain in th.e base flow of the Pecos River in the Roswell basin. The third aquifer, the shallow-artesian aquifer, is in red beds and evaporite beds of Permian age. This aquifer overlies the carbonate aquifer and underlies the shallow aquifer. The shallow-artesian aquifer acts as a minor aquifer and also as a semi-permeable unit which partly confines ground water in the carbonate aquifer. Vertical permeability of the shallow-artesian aquifer is variable and depends on the lithology and thickness of the aquifer. Hydraulic head in the shallow-artesian aquifer also varies quite widely depending on the depth to which a well penetrates the aquifer. All ground-water aquifers in the basin transect formational boundaries and are therefore not closely related to the named geologic formations. A flow net analysis of the carbonate aquifer and of the shallow aquifer imply that geologic structure is important in the movement of ground water in the basin by limiting the transmissivity of the shallow and carbonate aquifers, by forming the present pattern of surface water drainage, and possibly by the contamination of fresh ground water by highly saline ground water. The flow net analysis also shows areas of recharge to the shallow and carbonate aquifers, and areas where the carbonate aquifer looses water to the shallow-artesian aquifer and to the shallow aquifer.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectGeology -- New Mexico -- Roswell Basin.en_US
dc.subjectGroundwater -- New Mexico -- Roswell Basin.en_US
dc.subjectArtesian basins -- New Mexico -- Roswell Basin.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMining and Geological Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.oclc225864941en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.