Persistent Link:
http://hdl.handle.net/10150/190944
Title:
Algal sludge disposal in waste-water reclamation
Author:
Parker, Clinton Eldridge,1935-
Issue Date:
1966
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
An alum coagulation treatment facility employing mixing, flocculating, and settling units, designed by criteria commonly used in the design of water treatment facilities, was operated to determine whether or not it could effectively remove algae and other suspended matter from raw sewage stabilization lagoon effluent. Algal sludge produced by the treatment facility was investigated: (1) to evaluate its potential as a soil conditioner; (2) to determine whether a stabilization lagoon could be used for algal sludge disposal; and (3) to determine whether or not sludge recirculation would reflect a chemical savings. The experimental lagoons and treatment facility, owned by Sanitary District No. 1 of Pima County, Arizona, were located near Tucson, Arizona. It was found, in a field study, that mixing, flocculating, and settling units commonly used for water treatment were efficient in clarifying lagoon effluent and produced a water with the appearance of tap water. Active photosynthesizing algae, producing high oxygen concentrations in lagoon effluent, caused flotation of alum coagulated algal sludge; however, by selecting lagoon effluent low in dissolved oxygen content, algal sludge flotation in the treatment facility was prevented. Algal sludge with Less than one percent total solids was readily dewatered in three days by sand bed drying. Resuspension of air dried algal sludge resulted in a maximum moisture uptake of 50 percent of the final wet weight. Dry algal sludge contained 47 to 61 percent volatile solids, 1.6 to 5.2 percent total phosphorus, and 3.6 to 4.9 percent organic nitrogen. No significant amount of ammonia nitrogen or nitrite-nitrate nitrogen was present in the sludge. The composition and characteristics of dry algal sludge indicate applicability as an aid to soil conditioning. For three months the characteristics of a lagoon used for algal sludge disposal were compared with a control lagoon operated in parallel; it was found that the returned algal sludge was not detrimental to the stabilization process. Acid treated and non-acid treated algal sludge produced from completely treated lagoon effluent had a clarifying value when reused with alum to coagulate effluent, but neither acid treated nor nonacid treated sludge produced from partly treated effluent caused additional clarification when returned with the same coagulant dose that initially produced the sludge. None of the different types of return sludge investigated had a clarifying value when returned under operating conditions necessary to obtain a coagulant savings.
Type:
Dissertation-Reproduction (electronic); text
Keywords:
Hydrology.; Sewage -- Purification.; Sewage lagoons.; Sewage disposal -- Arizona.; Algae -- Economic aspects.
Degree Name:
Ph. D.
Degree Level:
doctoral
Degree Program:
Civil Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Mees, Quentin M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAlgal sludge disposal in waste-water reclamationen_US
dc.creatorParker, Clinton Eldridge,1935-en_US
dc.contributor.authorParker, Clinton Eldridge,1935-en_US
dc.date.issued1966en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAn alum coagulation treatment facility employing mixing, flocculating, and settling units, designed by criteria commonly used in the design of water treatment facilities, was operated to determine whether or not it could effectively remove algae and other suspended matter from raw sewage stabilization lagoon effluent. Algal sludge produced by the treatment facility was investigated: (1) to evaluate its potential as a soil conditioner; (2) to determine whether a stabilization lagoon could be used for algal sludge disposal; and (3) to determine whether or not sludge recirculation would reflect a chemical savings. The experimental lagoons and treatment facility, owned by Sanitary District No. 1 of Pima County, Arizona, were located near Tucson, Arizona. It was found, in a field study, that mixing, flocculating, and settling units commonly used for water treatment were efficient in clarifying lagoon effluent and produced a water with the appearance of tap water. Active photosynthesizing algae, producing high oxygen concentrations in lagoon effluent, caused flotation of alum coagulated algal sludge; however, by selecting lagoon effluent low in dissolved oxygen content, algal sludge flotation in the treatment facility was prevented. Algal sludge with Less than one percent total solids was readily dewatered in three days by sand bed drying. Resuspension of air dried algal sludge resulted in a maximum moisture uptake of 50 percent of the final wet weight. Dry algal sludge contained 47 to 61 percent volatile solids, 1.6 to 5.2 percent total phosphorus, and 3.6 to 4.9 percent organic nitrogen. No significant amount of ammonia nitrogen or nitrite-nitrate nitrogen was present in the sludge. The composition and characteristics of dry algal sludge indicate applicability as an aid to soil conditioning. For three months the characteristics of a lagoon used for algal sludge disposal were compared with a control lagoon operated in parallel; it was found that the returned algal sludge was not detrimental to the stabilization process. Acid treated and non-acid treated algal sludge produced from completely treated lagoon effluent had a clarifying value when reused with alum to coagulate effluent, but neither acid treated nor nonacid treated sludge produced from partly treated effluent caused additional clarification when returned with the same coagulant dose that initially produced the sludge. None of the different types of return sludge investigated had a clarifying value when returned under operating conditions necessary to obtain a coagulant savings.en_US
dc.description.notehydrology collectionen_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.typetexten_US
dc.subjectHydrology.en_US
dc.subjectSewage -- Purification.en_US
dc.subjectSewage lagoons.en_US
dc.subjectSewage disposal -- Arizona.en_US
dc.subjectAlgae -- Economic aspects.en_US
thesis.degree.namePh. D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCivil Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairMees, Quentin M.en_US
dc.identifier.oclc214141717en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.