VARIATIONAL PRINCIPLES FOR FIELD VARIABLES SUBJECT TO GROUP ACTIONS (GAUGE).

Persistent Link:
http://hdl.handle.net/10150/188075
Title:
VARIATIONAL PRINCIPLES FOR FIELD VARIABLES SUBJECT TO GROUP ACTIONS (GAUGE).
Author:
SADE, MARTIN CHARLES.
Issue Date:
1985
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation is concerned with variational problems whose field variables are functions on a product manifold M x G of two manifolds M and G. These field variables transform as type (0,1) tensor fields on M and are denoted by ψ(h)ᵅ (h = 1, ..., n = dim M, α = 1, ..., r = dim G). The dependence of ψ(h)ᵅ on the coordinates of G is given by a generalized gauge transformation that depends on a local map h:M → G. The requirement that a Lagrangian that is defined in terms of these field variables be independent of the coordinates of G and the choice of the map h endows G with a local Lie group structure. The class of Lagrangians that exhibits this type of invariance may be characterized by three invariance identities. These identities, together with an arbitrary solution of a system of partial differential equations, may be used to define field strengths associated with the ψ(h)ᵅ as well as connection and curvature forms on M. The former may be used to express the Euler-Lagrange equations in a particularly simple form. An energy-momentum tensor may also be defined in the usual manner; however additional conditions must be imposed in order to guarantee the existance of conservation laws resulting from this tensor. The above analysis may be repeated for the case that the field variables behave as type (0,2) tensor fields under coordinate transformations on M. For these field variables, the Euler-Lagrange expressions may be expressed as a product of a covariant divergence with the components λʰ of a type (1,0) vector field on M. An unexpected consequence of this construction is the fact that the Euler-Lagrange equations that result for the vector field λʰ are satisfied whenever the Euler-Lagrange equations associated with the field variables are satisfied.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Gauge fields (Physics); Group theory.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Mathematics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Rund, Hanno

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleVARIATIONAL PRINCIPLES FOR FIELD VARIABLES SUBJECT TO GROUP ACTIONS (GAUGE).en_US
dc.creatorSADE, MARTIN CHARLES.en_US
dc.contributor.authorSADE, MARTIN CHARLES.en_US
dc.date.issued1985en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation is concerned with variational problems whose field variables are functions on a product manifold M x G of two manifolds M and G. These field variables transform as type (0,1) tensor fields on M and are denoted by ψ(h)ᵅ (h = 1, ..., n = dim M, α = 1, ..., r = dim G). The dependence of ψ(h)ᵅ on the coordinates of G is given by a generalized gauge transformation that depends on a local map h:M → G. The requirement that a Lagrangian that is defined in terms of these field variables be independent of the coordinates of G and the choice of the map h endows G with a local Lie group structure. The class of Lagrangians that exhibits this type of invariance may be characterized by three invariance identities. These identities, together with an arbitrary solution of a system of partial differential equations, may be used to define field strengths associated with the ψ(h)ᵅ as well as connection and curvature forms on M. The former may be used to express the Euler-Lagrange equations in a particularly simple form. An energy-momentum tensor may also be defined in the usual manner; however additional conditions must be imposed in order to guarantee the existance of conservation laws resulting from this tensor. The above analysis may be repeated for the case that the field variables behave as type (0,2) tensor fields under coordinate transformations on M. For these field variables, the Euler-Lagrange expressions may be expressed as a product of a covariant divergence with the components λʰ of a type (1,0) vector field on M. An unexpected consequence of this construction is the fact that the Euler-Lagrange equations that result for the vector field λʰ are satisfied whenever the Euler-Lagrange equations associated with the field variables are satisfied.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectGauge fields (Physics)en_US
dc.subjectGroup theory.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRund, Hannoen_US
dc.identifier.proquest8529407en_US
dc.identifier.oclc696796145en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.