THE ELECTRONIC STRUCTURES OF ORGANOMETALLIC ALKYNE AND VINYLIDENE COMPLEXES AS DETERMINED BY X-RAY AND ULTRAVIOLET PHOTOELECTRON SPECTROSCOPY (CYCLOPENTADIENYL, VALENCE, MANGANESE, CORE, VANADIUM).

Persistent Link:
http://hdl.handle.net/10150/188072
Title:
THE ELECTRONIC STRUCTURES OF ORGANOMETALLIC ALKYNE AND VINYLIDENE COMPLEXES AS DETERMINED BY X-RAY AND ULTRAVIOLET PHOTOELECTRON SPECTROSCOPY (CYCLOPENTADIENYL, VALENCE, MANGANESE, CORE, VANADIUM).
Author:
PANG, LOUIS SING KIM.
Issue Date:
1985
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The chemistry and bonding of alkynes and vinylidenes in organometallic complexes have been investigated. A variety of these complexes have been synthesized and characterized by X-ray crystallography, temperature-dependent NMR, molecular orbital calculations, and most importantly, HeI, HeII and MgKα photoelectron spectroscopy (PES). The core and valence ionizations are found to be very informative with regard to the relative bond strengths and stabilities of these complexes. The first step involved preparation of the series of complexes R-CpM(CO)₂(alkyne) (R-Cp = Cp, MeCp and Me₅Cp). When M = Mn, Re (alkyne = 3-hexyne, 2-butyne and hexafluoro-2-butyne), the molecular mirror plane bisects the alkyne (horizontal conformation). PES shows the alkyne (π(⊥)) orbital forms a filled-filled interaction with the frontier metal orbital which is significantly destabilized. The ionizations derived from the two alkyne π orbitals are not split. When M = V, the alkyne (C₂H₂, 3-hexyne, etc.) coincides with the molecular mirror plane (vertical conformation). PES shows the alkyne π(⊥) orbital donates electrons to the electron deficient vanadium and the metal backbonds strongly to the alkyne. Electronic factors controlling the conformations in the d⁶ manganese case has been much discussed in the literature. Another factor not previously identified is necessary for understanding the conformation in the d⁴ vanadium case. The energy of the LUMO reveals that this factor is donation of cyclopentadienyl electrons into an empty d orbital of the electron deficient vanadium. Rearrangement of alkyne complexes to terminal vinylidene and bridging vinylidene complexes, similar to reactions of organic molecules on metal surfaces, were also investigated. The series of [R-CpMn(CO)₂]₂(μC=CHR') (R' = H, Me) (Chapter 6) and CpMn(CO)₂(C=CHBuᵗ) (Chapter 7) complexes were prepared. PES showed that the terminal vinylidene ligand has less filled-filled interaction with the metal and stabilizes the metal more than the alkyne does. The bridging vinylidene accepts more electron density from the metals and stabilizes the metals more than the terminal vinylidene. The removal of antibonding electrons from the HOMO of the metal fragment by the bridging vinylidene leaves net metal-metal bonding interaction and forms a stable dimetallocyclopropane structure.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Ligands -- Reactivity.; Catalysis.; Photoelectron spectroscopy.; Catalysts.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Lichtenberger, Dennis

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTHE ELECTRONIC STRUCTURES OF ORGANOMETALLIC ALKYNE AND VINYLIDENE COMPLEXES AS DETERMINED BY X-RAY AND ULTRAVIOLET PHOTOELECTRON SPECTROSCOPY (CYCLOPENTADIENYL, VALENCE, MANGANESE, CORE, VANADIUM).en_US
dc.creatorPANG, LOUIS SING KIM.en_US
dc.contributor.authorPANG, LOUIS SING KIM.en_US
dc.date.issued1985en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe chemistry and bonding of alkynes and vinylidenes in organometallic complexes have been investigated. A variety of these complexes have been synthesized and characterized by X-ray crystallography, temperature-dependent NMR, molecular orbital calculations, and most importantly, HeI, HeII and MgKα photoelectron spectroscopy (PES). The core and valence ionizations are found to be very informative with regard to the relative bond strengths and stabilities of these complexes. The first step involved preparation of the series of complexes R-CpM(CO)₂(alkyne) (R-Cp = Cp, MeCp and Me₅Cp). When M = Mn, Re (alkyne = 3-hexyne, 2-butyne and hexafluoro-2-butyne), the molecular mirror plane bisects the alkyne (horizontal conformation). PES shows the alkyne (π(⊥)) orbital forms a filled-filled interaction with the frontier metal orbital which is significantly destabilized. The ionizations derived from the two alkyne π orbitals are not split. When M = V, the alkyne (C₂H₂, 3-hexyne, etc.) coincides with the molecular mirror plane (vertical conformation). PES shows the alkyne π(⊥) orbital donates electrons to the electron deficient vanadium and the metal backbonds strongly to the alkyne. Electronic factors controlling the conformations in the d⁶ manganese case has been much discussed in the literature. Another factor not previously identified is necessary for understanding the conformation in the d⁴ vanadium case. The energy of the LUMO reveals that this factor is donation of cyclopentadienyl electrons into an empty d orbital of the electron deficient vanadium. Rearrangement of alkyne complexes to terminal vinylidene and bridging vinylidene complexes, similar to reactions of organic molecules on metal surfaces, were also investigated. The series of [R-CpMn(CO)₂]₂(μC=CHR') (R' = H, Me) (Chapter 6) and CpMn(CO)₂(C=CHBuᵗ) (Chapter 7) complexes were prepared. PES showed that the terminal vinylidene ligand has less filled-filled interaction with the metal and stabilizes the metal more than the alkyne does. The bridging vinylidene accepts more electron density from the metals and stabilizes the metals more than the terminal vinylidene. The removal of antibonding electrons from the HOMO of the metal fragment by the bridging vinylidene leaves net metal-metal bonding interaction and forms a stable dimetallocyclopropane structure.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectLigands -- Reactivity.en_US
dc.subjectCatalysis.en_US
dc.subjectPhotoelectron spectroscopy.en_US
dc.subjectCatalysts.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLichtenberger, Dennisen_US
dc.identifier.proquest8529403en_US
dc.identifier.oclc696796713en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.