A SEARCH FOR CHANGES IN THE BAND STRUCTURE OF EXTREMELY STRAIN-FREE MAGNESIUM-CADMIUM CRYSTALS AS A FUNCTION OF ALLOYING, IN THE DILUTE LIMIT (DE HAAS-VAN ALPHEN, FERMI SURFACE).

Persistent Link:
http://hdl.handle.net/10150/187953
Title:
A SEARCH FOR CHANGES IN THE BAND STRUCTURE OF EXTREMELY STRAIN-FREE MAGNESIUM-CADMIUM CRYSTALS AS A FUNCTION OF ALLOYING, IN THE DILUTE LIMIT (DE HAAS-VAN ALPHEN, FERMI SURFACE).
Author:
KUPFER, JOHN CARLTON.
Issue Date:
1985
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We report here a study of a specific doublet of de Haas-van Alphen frequencies in pure Mg and very dilute Mg(Cd) alloys with the magnetic field aligned with the c-axis. The work involved three stages. First, the use of extremely strain-free crystals, temperatures down to 40 millidegree Kelvin, large amplitude modulation, and the fast Fourier transform allowed the components of this doublet to be well resolved. This resolution allowed measurement of the changes in the cross-sectional area as a function of magnetic field orientation to verify the assignment of this doublet to the cap and monster arm junction at the top of the Brillouin zone. Third, with the magnetic field aligned with the c-axis, the splitting of this doublet offered a direct and sensitive indication of any symmetry breaking changes in the 0001 Fourier component of the ionic lattice potential in Mg upon the introduction of Cd. C. B. Friedberg's analysis of his electron interference lineshape data from the quantum interferometer in Mg had indicated that the energy of this band gap should increase by 40% with the introduction of 15 ppm Cd. Our data indicate that any change in the energy of the band gap must be at least three orders of magnitude smaller than that indicated by Friedberg. Our data are, in fact, consistent with there being no changes in the electronic band structure or the Fermi surface of Mg(Cd) alloys (with up to 0.02% (At) Cd), from that of pure Mg.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Magnesium-cadmium alloys -- Electric properties.; Magnesium alloys -- Electric properties.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Physics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Stark, Royal

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA SEARCH FOR CHANGES IN THE BAND STRUCTURE OF EXTREMELY STRAIN-FREE MAGNESIUM-CADMIUM CRYSTALS AS A FUNCTION OF ALLOYING, IN THE DILUTE LIMIT (DE HAAS-VAN ALPHEN, FERMI SURFACE).en_US
dc.creatorKUPFER, JOHN CARLTON.en_US
dc.contributor.authorKUPFER, JOHN CARLTON.en_US
dc.date.issued1985en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe report here a study of a specific doublet of de Haas-van Alphen frequencies in pure Mg and very dilute Mg(Cd) alloys with the magnetic field aligned with the c-axis. The work involved three stages. First, the use of extremely strain-free crystals, temperatures down to 40 millidegree Kelvin, large amplitude modulation, and the fast Fourier transform allowed the components of this doublet to be well resolved. This resolution allowed measurement of the changes in the cross-sectional area as a function of magnetic field orientation to verify the assignment of this doublet to the cap and monster arm junction at the top of the Brillouin zone. Third, with the magnetic field aligned with the c-axis, the splitting of this doublet offered a direct and sensitive indication of any symmetry breaking changes in the 0001 Fourier component of the ionic lattice potential in Mg upon the introduction of Cd. C. B. Friedberg's analysis of his electron interference lineshape data from the quantum interferometer in Mg had indicated that the energy of this band gap should increase by 40% with the introduction of 15 ppm Cd. Our data indicate that any change in the energy of the band gap must be at least three orders of magnitude smaller than that indicated by Friedberg. Our data are, in fact, consistent with there being no changes in the electronic band structure or the Fermi surface of Mg(Cd) alloys (with up to 0.02% (At) Cd), from that of pure Mg.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMagnesium-cadmium alloys -- Electric properties.en_US
dc.subjectMagnesium alloys -- Electric properties.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorStark, Royalen_US
dc.identifier.proquest8514912en_US
dc.identifier.oclc696347668en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.