OBSERVATION OF CHAOS IN A HYBRID OPTICAL BISTABLE DEVICE (PERIOD-DOUBLING).

Persistent Link:
http://hdl.handle.net/10150/187930
Title:
OBSERVATION OF CHAOS IN A HYBRID OPTICAL BISTABLE DEVICE (PERIOD-DOUBLING).
Author:
DERSTINE, MATTHEW WILLIAM.
Issue Date:
1985
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
An analog of an optically bistable device made constructed from both optical and electronic components is used to study chaos. This hybrid optically bistable system has a delay in the feedback so that the response time of the electronics is much faster than the feedback time. Such a system is unstable and shows pulsations and chaos. The character of the pulsations change as the gain of the amplifier or the input laser power is increased. These changes make up the period doubling route to chaos. Not all of the waveforms of an ideal period doubling sequence are observed. This truncation of the period-doubling sequence in the device is investigated as a function of the noise present in the system. Increasing the noise level decreases the number of period doublings observed. In the chaotic regime waveforms other than those predicted are observed. These waveforms are the frequency-locked waveforms seen in an earlier experiment which we find to be modified versions of the typical period-doubled waveforms. The transitions between these waveforms are discontinuous, and show hysteresis loops. By the introduction of an external locking signal, we are able to stabilize waveforms in the neighborhood of the discontinuous transitions. By so doing we show that the transitions among the branches are due to their lack of stability. The transitions are thus not strictly first-order nonequilibrium phase transitions, since in that case the branches cease to exist at the transition point. Since the path to chaos is nonunique, the types of chaos that are observable are also nonunique. To suggest a way to distinguish between different types of chaos and also to provide a tool for the study of chaos in other systems, we propose an operational test for chaos which leads to a straightforward experimental distinction between chaos and noise. We examine this test using the hybrid device to show that the method works. The test involves repeated measurement of the initial transient of a system whose initial condition is fixed. This method could be used to determine the existence of chaos in faster optical systems.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chaotic behavior in systems.; Optical bistability.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hopf, Fred

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOBSERVATION OF CHAOS IN A HYBRID OPTICAL BISTABLE DEVICE (PERIOD-DOUBLING).en_US
dc.creatorDERSTINE, MATTHEW WILLIAM.en_US
dc.contributor.authorDERSTINE, MATTHEW WILLIAM.en_US
dc.date.issued1985en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAn analog of an optically bistable device made constructed from both optical and electronic components is used to study chaos. This hybrid optically bistable system has a delay in the feedback so that the response time of the electronics is much faster than the feedback time. Such a system is unstable and shows pulsations and chaos. The character of the pulsations change as the gain of the amplifier or the input laser power is increased. These changes make up the period doubling route to chaos. Not all of the waveforms of an ideal period doubling sequence are observed. This truncation of the period-doubling sequence in the device is investigated as a function of the noise present in the system. Increasing the noise level decreases the number of period doublings observed. In the chaotic regime waveforms other than those predicted are observed. These waveforms are the frequency-locked waveforms seen in an earlier experiment which we find to be modified versions of the typical period-doubled waveforms. The transitions between these waveforms are discontinuous, and show hysteresis loops. By the introduction of an external locking signal, we are able to stabilize waveforms in the neighborhood of the discontinuous transitions. By so doing we show that the transitions among the branches are due to their lack of stability. The transitions are thus not strictly first-order nonequilibrium phase transitions, since in that case the branches cease to exist at the transition point. Since the path to chaos is nonunique, the types of chaos that are observable are also nonunique. To suggest a way to distinguish between different types of chaos and also to provide a tool for the study of chaos in other systems, we propose an operational test for chaos which leads to a straightforward experimental distinction between chaos and noise. We examine this test using the hybrid device to show that the method works. The test involves repeated measurement of the initial transient of a system whose initial condition is fixed. This method could be used to determine the existence of chaos in faster optical systems.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChaotic behavior in systems.en_US
dc.subjectOptical bistability.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHopf, Freden_US
dc.identifier.proquest8512681en_US
dc.identifier.oclc693611645en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.