CYTOGENETICS OF GAMETOGENESIS IN HAPLO 9 OF GOSSYPIUM HIRSUTUM L. (MEGASPOROGENESIS, MEIOSIS).

Persistent Link:
http://hdl.handle.net/10150/187915
Title:
CYTOGENETICS OF GAMETOGENESIS IN HAPLO 9 OF GOSSYPIUM HIRSUTUM L. (MEGASPOROGENESIS, MEIOSIS).
Author:
MYLES, ELBERT LEWIS, JR.
Issue Date:
1985
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Plants monosomic for chromosome 9 of Gossypium hirsutum, in addition to Haplo 9 plants, produce many kinds of aneuploid progenies consisting of monosomics, trisomics, multiple monosomics, and different monosomic-trisomic combinations. Cytological analysis of megasporagenesis was conducted to determine the stage and the mechanism that would account for the production of the different kinds of aneuploid progeny. Two new cytotypes involving chromosome 9 were isolated and identified as monotelodisome 9S (Telo 9S) and monoisodisome 9S (Iso 9S), both of which produce different kinds of aneuploids very similar to Haplo 9. Monotelodisomic 9L plants do not produce various kinds of aneuploid progeny like Haplo 9, Telo 9S and Iso 9S. These observations indicate that control of chromosome segregation is on the long arm of chromosome 9. There was no significant difference between Telo 9S and Iso 9S in the kinds and frequencies of aneuploids, but there was a significant difference between these two and Haplo 9. Haplo 9, Telo 9S and Iso 9S showed no significant difference in the chromosomes subtracted or added to the chromosome complement of their respective aneuploid progenies. Analysis of female gametogenesis in TM1 or control plants showed that premeiotic division occurred when bud size is 6.0 - 6.6mm; meiosis occurred when bud size is 6.3 - 7.2mm; the first mitotic division of the megaspore occurred when bud size is 6.9 - 7.8mm, and the second and third mitotic divisions of the megaspore occurred when bud size is 7.8 - 8.5mm. The premeiotic, meiotic, and post meiotic divisions were normal. Female gametogenesis was cytologically analyzed in Haplo 9 plants and it was observed that there was a higher frequency of gametophytes with fewer post meiotic divisions and that there was nonsynchrony of the post-meiotic divisions in a number of the developing female gametophytes. It is assumed that these irregularities are due to the absence of chromosome 9. It is concluded that the long arm of chromosome 9 has control over chromosome segregation, and that most likely nondisjunction occurs throughout female gametogenesis, but confined primarily to the three mitotic divisions following meiosis. Genetic tests showed that eight mutant genes were not located on chromosome 9. The aneuploids had lower seeds per boll than normal disomic plants.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Gametogenesis.; Aneuploidy.; Cottonseed.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Genetics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Endrizzi, John E.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCYTOGENETICS OF GAMETOGENESIS IN HAPLO 9 OF GOSSYPIUM HIRSUTUM L. (MEGASPOROGENESIS, MEIOSIS).en_US
dc.creatorMYLES, ELBERT LEWIS, JR.en_US
dc.contributor.authorMYLES, ELBERT LEWIS, JR.en_US
dc.date.issued1985en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractPlants monosomic for chromosome 9 of Gossypium hirsutum, in addition to Haplo 9 plants, produce many kinds of aneuploid progenies consisting of monosomics, trisomics, multiple monosomics, and different monosomic-trisomic combinations. Cytological analysis of megasporagenesis was conducted to determine the stage and the mechanism that would account for the production of the different kinds of aneuploid progeny. Two new cytotypes involving chromosome 9 were isolated and identified as monotelodisome 9S (Telo 9S) and monoisodisome 9S (Iso 9S), both of which produce different kinds of aneuploids very similar to Haplo 9. Monotelodisomic 9L plants do not produce various kinds of aneuploid progeny like Haplo 9, Telo 9S and Iso 9S. These observations indicate that control of chromosome segregation is on the long arm of chromosome 9. There was no significant difference between Telo 9S and Iso 9S in the kinds and frequencies of aneuploids, but there was a significant difference between these two and Haplo 9. Haplo 9, Telo 9S and Iso 9S showed no significant difference in the chromosomes subtracted or added to the chromosome complement of their respective aneuploid progenies. Analysis of female gametogenesis in TM1 or control plants showed that premeiotic division occurred when bud size is 6.0 - 6.6mm; meiosis occurred when bud size is 6.3 - 7.2mm; the first mitotic division of the megaspore occurred when bud size is 6.9 - 7.8mm, and the second and third mitotic divisions of the megaspore occurred when bud size is 7.8 - 8.5mm. The premeiotic, meiotic, and post meiotic divisions were normal. Female gametogenesis was cytologically analyzed in Haplo 9 plants and it was observed that there was a higher frequency of gametophytes with fewer post meiotic divisions and that there was nonsynchrony of the post-meiotic divisions in a number of the developing female gametophytes. It is assumed that these irregularities are due to the absence of chromosome 9. It is concluded that the long arm of chromosome 9 has control over chromosome segregation, and that most likely nondisjunction occurs throughout female gametogenesis, but confined primarily to the three mitotic divisions following meiosis. Genetic tests showed that eight mutant genes were not located on chromosome 9. The aneuploids had lower seeds per boll than normal disomic plants.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectGametogenesis.en_US
dc.subjectAneuploidy.en_US
dc.subjectCottonseed.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGeneticsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorEndrizzi, John E.en_US
dc.identifier.proquest8511708en_US
dc.identifier.oclc693604894en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.