EXERCISE TRAINING-INDUCED HYPERVOLEMIA: THE PHYSIOLOGICAL MECHANISMS IN THE GREYHOUND DOG AND THE HORSE.

Persistent Link:
http://hdl.handle.net/10150/187816
Title:
EXERCISE TRAINING-INDUCED HYPERVOLEMIA: THE PHYSIOLOGICAL MECHANISMS IN THE GREYHOUND DOG AND THE HORSE.
Author:
MCKEEVER, KENNETH HARRINGTON.
Issue Date:
1984
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Four Greyhound dogs and six horses were utilized to study the physiological mechanisms associated with the development of an exercise training-induced hypervolemia. The animals were used in two separate experiments and were trained for 14 days on a treadmill ergometer and the data were used to formulate conclusions regarding the physiological and practical implications related to the phenomenon. The data reported in this dissertation indicated that exercise training will cause an expansion of the plasma volume in the Greyhound dog (+27%, P < 0.05) and the horse (+29.1% P < 0.05). Physiologically the result is similar in man, the dog, and the horse, however, the mechanisms by which this adaptation is reached appears to differ in each of the species. In the dog, water intake (+33%, P < 0.05) appears to be the primary mechanism for the increase in fluid volume. In the horse, renal control mechanisms (24-hr urine output -24.5%, P < 0.05) appear to be the primary mechanism with those that control the retention of solutes other than sodium predominating over those that control the reabsorption of sodium and water. Based upon the literature, it appears that in man, renal mechanisms predominate the hypervolemic response and mechanisms which control the conservation of sodium appear to be most active in the defense of the tonicity and volume of the vascular compartment. These species differences are important to the understanding of the physiology behind the onset of the training-induced hypervolemia and they provide pertinent information upon which decisions regarding the choice of animal models for future research.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Exercise -- Physiological aspects.; Blood plasma.; Horses -- Physiology.; Greyhounds -- Physiology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Animal Physiology; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEXERCISE TRAINING-INDUCED HYPERVOLEMIA: THE PHYSIOLOGICAL MECHANISMS IN THE GREYHOUND DOG AND THE HORSE.en_US
dc.creatorMCKEEVER, KENNETH HARRINGTON.en_US
dc.contributor.authorMCKEEVER, KENNETH HARRINGTON.en_US
dc.date.issued1984en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractFour Greyhound dogs and six horses were utilized to study the physiological mechanisms associated with the development of an exercise training-induced hypervolemia. The animals were used in two separate experiments and were trained for 14 days on a treadmill ergometer and the data were used to formulate conclusions regarding the physiological and practical implications related to the phenomenon. The data reported in this dissertation indicated that exercise training will cause an expansion of the plasma volume in the Greyhound dog (+27%, P < 0.05) and the horse (+29.1% P < 0.05). Physiologically the result is similar in man, the dog, and the horse, however, the mechanisms by which this adaptation is reached appears to differ in each of the species. In the dog, water intake (+33%, P < 0.05) appears to be the primary mechanism for the increase in fluid volume. In the horse, renal control mechanisms (24-hr urine output -24.5%, P < 0.05) appear to be the primary mechanism with those that control the retention of solutes other than sodium predominating over those that control the reabsorption of sodium and water. Based upon the literature, it appears that in man, renal mechanisms predominate the hypervolemic response and mechanisms which control the conservation of sodium appear to be most active in the defense of the tonicity and volume of the vascular compartment. These species differences are important to the understanding of the physiology behind the onset of the training-induced hypervolemia and they provide pertinent information upon which decisions regarding the choice of animal models for future research.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectExercise -- Physiological aspects.en_US
dc.subjectBlood plasma.en_US
dc.subjectHorses -- Physiology.en_US
dc.subjectGreyhounds -- Physiology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAnimal Physiologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8501916en_US
dc.identifier.oclc693356740en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.