NONSTANDARD REPRESENTATIONS OF ASPHERIC SURFACES IN OPTICAL DESIGN.

Persistent Link:
http://hdl.handle.net/10150/187778
Title:
NONSTANDARD REPRESENTATIONS OF ASPHERIC SURFACES IN OPTICAL DESIGN.
Author:
RODGERS, JOHN MICHAEL.
Issue Date:
1984
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The standard representation of an aspheric optical surface is a power series added to a base conic. This dissertation considers alternate ways of describing an aspheric surface, and the effect of such alternate descriptions on the design of optical systems. In rare cases one may represent an aspheric by an expression in closed form that allows the system to yield imagery that is in some sense perfect. A new family of such systems, having perfect axial imagery, is described. In most cases one must represent an aspheric by a series of basis functions added to a base conic. Nonpolynomial basis functions are discussed and used to design several different lenses. They are shown to give better image quality than the same number, or a larger number, of polynomial series terms. When used as optimization variables, the nonstandard basis functions are shown to converge to a solution in fewer iterations, in some cases, than when power series variables were used. The increase in convergence rate is at least paritially offset by the fact that the nonstandard functions take longer to evaluate than polynomials. Optical testing of aspheric surfaces having nonpolynomial descriptions is discussed to the extent necessary to show the feasibility, in principle, of testing and manufacturing some of the design examples presented in the dissertation. When the idea of designing aspheric surfaces with nonstandard functions as variables is accepted, one needs to know which of the many possible such variables to use in a given application. Some methods of searching for the most appropriate variables are described. A hypothesis is presented on which types of optical systems will benefit from nonstandard aspheric representations, and which will be adequately designed with polynomial representations.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Aspherical lenses.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNONSTANDARD REPRESENTATIONS OF ASPHERIC SURFACES IN OPTICAL DESIGN.en_US
dc.creatorRODGERS, JOHN MICHAEL.en_US
dc.contributor.authorRODGERS, JOHN MICHAEL.en_US
dc.date.issued1984en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe standard representation of an aspheric optical surface is a power series added to a base conic. This dissertation considers alternate ways of describing an aspheric surface, and the effect of such alternate descriptions on the design of optical systems. In rare cases one may represent an aspheric by an expression in closed form that allows the system to yield imagery that is in some sense perfect. A new family of such systems, having perfect axial imagery, is described. In most cases one must represent an aspheric by a series of basis functions added to a base conic. Nonpolynomial basis functions are discussed and used to design several different lenses. They are shown to give better image quality than the same number, or a larger number, of polynomial series terms. When used as optimization variables, the nonstandard basis functions are shown to converge to a solution in fewer iterations, in some cases, than when power series variables were used. The increase in convergence rate is at least paritially offset by the fact that the nonstandard functions take longer to evaluate than polynomials. Optical testing of aspheric surfaces having nonpolynomial descriptions is discussed to the extent necessary to show the feasibility, in principle, of testing and manufacturing some of the design examples presented in the dissertation. When the idea of designing aspheric surfaces with nonstandard functions as variables is accepted, one needs to know which of the many possible such variables to use in a given application. Some methods of searching for the most appropriate variables are described. A hypothesis is presented on which types of optical systems will benefit from nonstandard aspheric representations, and which will be adequately designed with polynomial representations.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectAspherical lenses.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8424932en_US
dc.identifier.oclc693269006en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.