TISSUE CULTURE AND RADICLE EXCISION TECHNIQUES FOR EVALUATION OF SALT TOLERANT ALFALFA (MEDICAGO SATIVA L.).

Persistent Link:
http://hdl.handle.net/10150/187584
Title:
TISSUE CULTURE AND RADICLE EXCISION TECHNIQUES FOR EVALUATION OF SALT TOLERANT ALFALFA (MEDICAGO SATIVA L.).
Author:
SEITZ, MORENA HOLLY.
Issue Date:
1983
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Tissue culture and radicle excision techniques were employed to evaluate salt tolerance in alfalfa (Medicago sativa L.). Plant suspension cultures of either seedling root or shoot origin were studied in media with or without supplemental NaCl (3.54 g liter⁻¹). In most cases, the growth rates of root-derived cultures were stimulated by this low level of supplemental NaCl while most shoot-derived cultures were not stimulated by NaCl. Excised radicles of three populations of alfalfa which possessed widely differing ranges of germination salt tolerance were screened in four salts (NaCl, KCl, Na₂SO₄, and K₂SO₄) at six varying concentrations. As was observed in the tissue culture experiments, low levels of NaCl (7.09 g liter⁻¹) stimulated radicle elongation of all populations as compared to the elongation levels of the control solutions (no supplemental salts). In general, for NaCl, the population that posessed the highest degree of germination salt tolerance (Az-St 1982) also displayed the greatest rates of radicle elongation especially in the highest salt concentrations. Additionally, this population along with the moderately germination salt tolerant population (Az-ST 1979) maintained higher rates of elongation in KCl, K₂SO₄ and Na₂SO₄ than did the control germplasm which has little germination salt tolerance (Mesa Sirsa Control). Examinations of each individual population in all four salts simultaneously, indicated that the sulfate salts reduced radicle elongation to a greater extent than did the chloride salts. Evaluation of both osmotic effects and specific ion effects showed that the specific ion effects attributed to the anions were more detrimental to radicle elongation than were the osmotic effects.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Alfalfa -- Morphology.; Plant tissue culture.; Plants -- Effect of salt on.; Roots (Botany) -- Morphology.; Salt-tolerant crops.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Plant Sciences; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTISSUE CULTURE AND RADICLE EXCISION TECHNIQUES FOR EVALUATION OF SALT TOLERANT ALFALFA (MEDICAGO SATIVA L.).en_US
dc.creatorSEITZ, MORENA HOLLY.en_US
dc.contributor.authorSEITZ, MORENA HOLLY.en_US
dc.date.issued1983en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTissue culture and radicle excision techniques were employed to evaluate salt tolerance in alfalfa (Medicago sativa L.). Plant suspension cultures of either seedling root or shoot origin were studied in media with or without supplemental NaCl (3.54 g liter⁻¹). In most cases, the growth rates of root-derived cultures were stimulated by this low level of supplemental NaCl while most shoot-derived cultures were not stimulated by NaCl. Excised radicles of three populations of alfalfa which possessed widely differing ranges of germination salt tolerance were screened in four salts (NaCl, KCl, Na₂SO₄, and K₂SO₄) at six varying concentrations. As was observed in the tissue culture experiments, low levels of NaCl (7.09 g liter⁻¹) stimulated radicle elongation of all populations as compared to the elongation levels of the control solutions (no supplemental salts). In general, for NaCl, the population that posessed the highest degree of germination salt tolerance (Az-St 1982) also displayed the greatest rates of radicle elongation especially in the highest salt concentrations. Additionally, this population along with the moderately germination salt tolerant population (Az-ST 1979) maintained higher rates of elongation in KCl, K₂SO₄ and Na₂SO₄ than did the control germplasm which has little germination salt tolerance (Mesa Sirsa Control). Examinations of each individual population in all four salts simultaneously, indicated that the sulfate salts reduced radicle elongation to a greater extent than did the chloride salts. Evaluation of both osmotic effects and specific ion effects showed that the specific ion effects attributed to the anions were more detrimental to radicle elongation than were the osmotic effects.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectAlfalfa -- Morphology.en_US
dc.subjectPlant tissue culture.en_US
dc.subjectPlants -- Effect of salt on.en_US
dc.subjectRoots (Botany) -- Morphology.en_US
dc.subjectSalt-tolerant crops.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8403242en_US
dc.identifier.oclc690278797en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.