Persistent Link:
http://hdl.handle.net/10150/187505
Title:
A hierarchical size-structured population model.
Author:
Blayneh, Kbenesh W.
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A model is considered for the dynamics of a size-structured population in which the birth, death and growth rates of an individual of size s are functions of the total population biomass of all individuals of size larger or smaller than s. The dynamics of the size distribution is governed by the McKendrick equations. An existence/uniqueness theorem for this equation is proved using an equivalent pair of partial and ordinary differential equations. The asymptotic dynamics of the density function is studied and some applications of the model to intraspecific predation and certain types of intraspecific competitions are given.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Cushing, Jim

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA hierarchical size-structured population model.en_US
dc.creatorBlayneh, Kbenesh W.en_US
dc.contributor.authorBlayneh, Kbenesh W.en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA model is considered for the dynamics of a size-structured population in which the birth, death and growth rates of an individual of size s are functions of the total population biomass of all individuals of size larger or smaller than s. The dynamics of the size distribution is governed by the McKendrick equations. An existence/uniqueness theorem for this equation is proved using an equivalent pair of partial and ordinary differential equations. The asymptotic dynamics of the density function is studied and some applications of the model to intraspecific predation and certain types of intraspecific competitions are given.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairCushing, Jimen_US
dc.contributor.committeememberLomen, Daviden_US
dc.contributor.committeememberBrio, Moyseyen_US
dc.identifier.proquest9626546en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.