Optical contrast mechanisms and shear force interactions in near-field scanning optical microscopy.

Persistent Link:
http://hdl.handle.net/10150/187486
Title:
Optical contrast mechanisms and shear force interactions in near-field scanning optical microscopy.
Author:
Froehlich, Fred Franklin.
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation investigates mechanisms that influence image formation in near-field scanning optical microscopy (NSOM) performed with tapered fiber aperture probes. Both the generation of optical contrast for transmission mode NSOM and the force interaction between the probe and sample that is the basis for topographic imaging by shear force microscopy (SFM) are studied. A brief introduction and review of the field of NSOM are given. The lack of understanding in the previous work of the optical and force interactions between the probe and sample is cited as the motivation for the present investigation. A theoretical model is developed that describes the linear scattering of the probe's source field by the complex transmittance of the sample. The imaging of subwavelength features is shown to arise from the spatial mixing of the evanescent waves of the probe's source field with the high spatial frequencies of the object. Calculations of the optical transfer function are presented. The shear force servo that regulates the probe-to-sample separation and facilitates the acquisition of SFM imagery is extensively analyzed. The optical detection scheme that measures the dither vibration of the probe is characterized in order to optimize the servo performance. The shear force interaction is then analyzed by modeling the probe as a simple harmonic oscillator. Measurements of the probe's resonant response while interacting with the sample reveal that the shear force is mainly frictional. The magnitude of the force is derived, and limitations on its measurement are established through analysis of the minimum detectable displacement of the probe. The servo performance is shown to be shot noise limited, as opposed to being limited by the thermal vibration noise of the probe. Experimental SFM and NSOM images of various grating structures and optical data storage materials are presented. The optical contrast mechanisms displayed in the images are identified. Linear scattering generally dominates the contrast, but some images exhibit unique near-field effects due to probe-sample interactions that lead to nonlinear imaging behavior. The origin of these interactions is the boundary conditions imposed on the probe's aperture by the sample's composition and structure.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Milster, Thomas D.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOptical contrast mechanisms and shear force interactions in near-field scanning optical microscopy.en_US
dc.creatorFroehlich, Fred Franklin.en_US
dc.contributor.authorFroehlich, Fred Franklin.en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation investigates mechanisms that influence image formation in near-field scanning optical microscopy (NSOM) performed with tapered fiber aperture probes. Both the generation of optical contrast for transmission mode NSOM and the force interaction between the probe and sample that is the basis for topographic imaging by shear force microscopy (SFM) are studied. A brief introduction and review of the field of NSOM are given. The lack of understanding in the previous work of the optical and force interactions between the probe and sample is cited as the motivation for the present investigation. A theoretical model is developed that describes the linear scattering of the probe's source field by the complex transmittance of the sample. The imaging of subwavelength features is shown to arise from the spatial mixing of the evanescent waves of the probe's source field with the high spatial frequencies of the object. Calculations of the optical transfer function are presented. The shear force servo that regulates the probe-to-sample separation and facilitates the acquisition of SFM imagery is extensively analyzed. The optical detection scheme that measures the dither vibration of the probe is characterized in order to optimize the servo performance. The shear force interaction is then analyzed by modeling the probe as a simple harmonic oscillator. Measurements of the probe's resonant response while interacting with the sample reveal that the shear force is mainly frictional. The magnitude of the force is derived, and limitations on its measurement are established through analysis of the minimum detectable displacement of the probe. The servo performance is shown to be shot noise limited, as opposed to being limited by the thermal vibration noise of the probe. Experimental SFM and NSOM images of various grating structures and optical data storage materials are presented. The optical contrast mechanisms displayed in the images are identified. Linear scattering generally dominates the contrast, but some images exhibit unique near-field effects due to probe-sample interactions that lead to nonlinear imaging behavior. The origin of these interactions is the boundary conditions imposed on the probe's aperture by the sample's composition and structure.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairMilster, Thomas D.en_US
dc.contributor.committeememberBarrett, Harrison H.en_US
dc.contributor.committeememberWyant, Jamesen_US
dc.identifier.proquest9626517en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.