Persistent Link:
http://hdl.handle.net/10150/187314
Title:
THE NEUROMODULATORY ACTION OF TAURINE IN A GENETIC EPILEPSY.
Author:
BONHAUS, DOUGLAS WILLIAM.
Issue Date:
1983
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Taurine (2-aminoethane sulfonic acid) is one of the most abundant inhibitory amino acids in the mammalian central nervous system (CNS). Substantial evidence exists to suggest that this amino acid is a physiological modulator of neuronal excitability. Taurine is also a potent anticonvulsant in a variety of animal epilepsies and in certain human epileptics. The mechanisms of these neuromodulatory and anticonvulsant actions of taurine are not known. I have investigated a proposed relationship between altered amino acid metabolism, seizure-susceptibility and the anticonvulsant action of taurine. The findings of the work presented in this dissertation indicate that in the genetically seizure-susceptible rat there are alterations in the subcellular concentration and transport of taurine. Furthermore, the data presented here indicate that these alterations in the CNS handling of taurine are not a consequence of seizure activity but rather may be contributing to the seizure-susceptibility. This supports the hypothesis that taurine is a physiological modulator of neuronal excitability and that defects in this neuromodulatory process may contribute to seizure-susceptibility. The action of taurine was found to not be mediated by a redistribution of glutamate in the brain but instead may be by increasing the conversion of glutamate to GABA.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Epilepsy -- Etiology.; Taurine -- Physiological effect.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Pharmacology; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTHE NEUROMODULATORY ACTION OF TAURINE IN A GENETIC EPILEPSY.en_US
dc.creatorBONHAUS, DOUGLAS WILLIAM.en_US
dc.contributor.authorBONHAUS, DOUGLAS WILLIAM.en_US
dc.date.issued1983en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTaurine (2-aminoethane sulfonic acid) is one of the most abundant inhibitory amino acids in the mammalian central nervous system (CNS). Substantial evidence exists to suggest that this amino acid is a physiological modulator of neuronal excitability. Taurine is also a potent anticonvulsant in a variety of animal epilepsies and in certain human epileptics. The mechanisms of these neuromodulatory and anticonvulsant actions of taurine are not known. I have investigated a proposed relationship between altered amino acid metabolism, seizure-susceptibility and the anticonvulsant action of taurine. The findings of the work presented in this dissertation indicate that in the genetically seizure-susceptible rat there are alterations in the subcellular concentration and transport of taurine. Furthermore, the data presented here indicate that these alterations in the CNS handling of taurine are not a consequence of seizure activity but rather may be contributing to the seizure-susceptibility. This supports the hypothesis that taurine is a physiological modulator of neuronal excitability and that defects in this neuromodulatory process may contribute to seizure-susceptibility. The action of taurine was found to not be mediated by a redistribution of glutamate in the brain but instead may be by increasing the conversion of glutamate to GABA.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEpilepsy -- Etiology.en_US
dc.subjectTaurine -- Physiological effect.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePharmacologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8401257en_US
dc.identifier.oclc690176633en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.