A high energy study of Lyman alpha radiation for the interaction of tritium ion, deuterium ion, and hydrogen ion with the atmospheric gases.

Persistent Link:
http://hdl.handle.net/10150/187291
Title:
A high energy study of Lyman alpha radiation for the interaction of tritium ion, deuterium ion, and hydrogen ion with the atmospheric gases.
Author:
Dugan, James Michael.
Issue Date:
1995
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Since the first experimental evidence that the external source of charged particles precipitating into the earth's atmosphere, resulting in the aurora, consisted of protons as well as electrons there has been great interest in the proton interaction processes that occur due to the collision of protons with the atmospheric gases. Though the distribution of the proton flux is typically weighted towards lower energies, from 10 to 50 keV, at times anywhere from 40 to 100% of the flux can consist of high-energy protons far in excess of 100 keV. Determining the interaction cross-sections for these high-energy events is important if a thorough analysis of the auroral mechanisms is to be made. Measurements of the L(α) emission cross-sections for the interaction of H₃⁺, H₂⁺, and H⁺ with N₂ and O₂ have been completed over the energy range from 140 to 603 keV. Results show monotonically decreasing L(α) cross-sections with increasing energy for the interaction of both species of hydrogen molecular ions and protons with N₂ and O₂ up to a cut-off, after which the cross-sections appear to be constant and independent of energy. This "plateau region" would seem to indicate a fairly abrupt change in the type or kind of process or processes that are occurring. By measuring the L(α) emission at a distance of 4 cm into the interaction region a type or kind of process or processes that are occurring. By measuring the L(α) emission at a distance of 4 cm into the interaction region a fraction of the cascade contributions were measured. However, at the high-energies used in these experiments that fraction is exceedingly small, comprising at most a few percent, even at the lowest experimental energy of 140 keV.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Atmospheric Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Bickel, William S.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA high energy study of Lyman alpha radiation for the interaction of tritium ion, deuterium ion, and hydrogen ion with the atmospheric gases.en_US
dc.creatorDugan, James Michael.en_US
dc.contributor.authorDugan, James Michael.en_US
dc.date.issued1995en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSince the first experimental evidence that the external source of charged particles precipitating into the earth's atmosphere, resulting in the aurora, consisted of protons as well as electrons there has been great interest in the proton interaction processes that occur due to the collision of protons with the atmospheric gases. Though the distribution of the proton flux is typically weighted towards lower energies, from 10 to 50 keV, at times anywhere from 40 to 100% of the flux can consist of high-energy protons far in excess of 100 keV. Determining the interaction cross-sections for these high-energy events is important if a thorough analysis of the auroral mechanisms is to be made. Measurements of the L(α) emission cross-sections for the interaction of H₃⁺, H₂⁺, and H⁺ with N₂ and O₂ have been completed over the energy range from 140 to 603 keV. Results show monotonically decreasing L(α) cross-sections with increasing energy for the interaction of both species of hydrogen molecular ions and protons with N₂ and O₂ up to a cut-off, after which the cross-sections appear to be constant and independent of energy. This "plateau region" would seem to indicate a fairly abrupt change in the type or kind of process or processes that are occurring. By measuring the L(α) emission at a distance of 4 cm into the interaction region a type or kind of process or processes that are occurring. By measuring the L(α) emission at a distance of 4 cm into the interaction region a fraction of the cascade contributions were measured. However, at the high-energies used in these experiments that fraction is exceedingly small, comprising at most a few percent, even at the lowest experimental energy of 140 keV.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAtmospheric Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairBickel, William S.en_US
dc.identifier.proquest9604517en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.