The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation.

Persistent Link:
http://hdl.handle.net/10150/187238
Title:
The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation.
Author:
Cruz-Pacheco, Gustavo.
Issue Date:
1995
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This work consists of a study of the complex Ginzburg-Landau equation (CGL) as a perturbation of the nonlinear Schrodinger equation (NLS) in one dimension under periodic boundary conditions. Using an averaging technique which is similar to a Melnikov method for pde's, necessary conditions are derived for the persistence of NLS solutions under the CGL perturbation. For the traveling wave solutions, these conditions are derived for a general nonlinearity and written explicitly as two equations for the two continuous parameters which determine the NLS traveling wave. It is shown using a Melnikov argument that in this case these two conditions are sufficient provided they satisfy a transversality condition. As a concrete example, the equations for the parameters are solved numerically in the important case of the CGL equation with a cubic nonlinearity. For the case of the CGL equation with a general power nonlinearity, it is proved that the NLS homoclinic orbits to rotating waves are destroyed by the CGL perturbation. Special attention is dedicated to the cubic case. For this nonlinearity, the NLS equation is a completely integrable Hamiltonian system and a much larger family of its solutions can be written explicitly. The necessary conditions for the persistence of the NLS isospectral manifold are written explicitly as a system of equations for the simple periodic eigenvalues. As an example, the conditions for an even genus two solution are written down as a system of three equations with three unknowns.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Levermore, C. David

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe nonlinear Schroedinger limit of the complex Ginzburg-Landau equation.en_US
dc.creatorCruz-Pacheco, Gustavo.en_US
dc.contributor.authorCruz-Pacheco, Gustavo.en_US
dc.date.issued1995en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis work consists of a study of the complex Ginzburg-Landau equation (CGL) as a perturbation of the nonlinear Schrodinger equation (NLS) in one dimension under periodic boundary conditions. Using an averaging technique which is similar to a Melnikov method for pde's, necessary conditions are derived for the persistence of NLS solutions under the CGL perturbation. For the traveling wave solutions, these conditions are derived for a general nonlinearity and written explicitly as two equations for the two continuous parameters which determine the NLS traveling wave. It is shown using a Melnikov argument that in this case these two conditions are sufficient provided they satisfy a transversality condition. As a concrete example, the equations for the parameters are solved numerically in the important case of the CGL equation with a cubic nonlinearity. For the case of the CGL equation with a general power nonlinearity, it is proved that the NLS homoclinic orbits to rotating waves are destroyed by the CGL perturbation. Special attention is dedicated to the cubic case. For this nonlinearity, the NLS equation is a completely integrable Hamiltonian system and a much larger family of its solutions can be written explicitly. The necessary conditions for the persistence of the NLS isospectral manifold are written explicitly as a system of equations for the simple periodic eigenvalues. As an example, the conditions for an even genus two solution are written down as a system of three equations with three unknowns.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairLevermore, C. Daviden_US
dc.contributor.committeememberErcolani, Nicholas M.en_US
dc.contributor.committeememberFlaschka, Hermannen_US
dc.identifier.proquest9603384en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.