Persistent Link:
http://hdl.handle.net/10150/187136
Title:
Synthesis of electrostatic electron and ion optical systems.
Author:
Cho, Han Ku.
Issue Date:
1995
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Synthesis of electrostatic lenses was successfully achieved by using the cubic spline method or the a priori given multielectrode approach. In this dissertation, we propose synthesis of electrostatic deflectors with given source parameters, first-order properties, and minimum aberrations by using the cubic spline method or the a priori given multielectrode approach through a sequential optimization technique combined with the gradient method and the Hooke and Jeeves' method. Our calculations show that the third-order geometrical deflection aberrations can be reduced by 2-3 orders of magnitude using the electrodes of electrostatic spline deflectors reconstructed in terms of the optimized first harmonic field distribution (FHFD) functions or a multielectrode deflector with 3 units or 5 units, each having short cylindrical segments geometrically octupole symmetry. We also present synthesis of an ion beam column as a single entity, based on combined focusing and deflection (CFD). In a CFD system it is difficult to reconstruct the electrodes by using the cubic spline method because of the difference in the role of inflection points between axial potential distribution (APD) and FHFD functions. In this case, while the cubic spline method remains a valuable mathematical tool, the a priori given multielectrode approach is a better candidate for the synthesis of the CFD system. By using a sequential optimization technique for a multipurpose multipole system with 9 units, our calculations show that one can obtain a beam spot radius less than 7 nm and current density of 614 A/cm², scanned over a 2 mm-square field for a field ionization source. A sensitivity analysis is given, and the optimum working distances of a given CFD system are presented for the minimum beam spot radius.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Electrical and Computer Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Szilagyi, Miklos N.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleSynthesis of electrostatic electron and ion optical systems.en_US
dc.creatorCho, Han Ku.en_US
dc.contributor.authorCho, Han Ku.en_US
dc.date.issued1995en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSynthesis of electrostatic lenses was successfully achieved by using the cubic spline method or the a priori given multielectrode approach. In this dissertation, we propose synthesis of electrostatic deflectors with given source parameters, first-order properties, and minimum aberrations by using the cubic spline method or the a priori given multielectrode approach through a sequential optimization technique combined with the gradient method and the Hooke and Jeeves' method. Our calculations show that the third-order geometrical deflection aberrations can be reduced by 2-3 orders of magnitude using the electrodes of electrostatic spline deflectors reconstructed in terms of the optimized first harmonic field distribution (FHFD) functions or a multielectrode deflector with 3 units or 5 units, each having short cylindrical segments geometrically octupole symmetry. We also present synthesis of an ion beam column as a single entity, based on combined focusing and deflection (CFD). In a CFD system it is difficult to reconstruct the electrodes by using the cubic spline method because of the difference in the role of inflection points between axial potential distribution (APD) and FHFD functions. In this case, while the cubic spline method remains a valuable mathematical tool, the a priori given multielectrode approach is a better candidate for the synthesis of the CFD system. By using a sequential optimization technique for a multipurpose multipole system with 9 units, our calculations show that one can obtain a beam spot radius less than 7 nm and current density of 614 A/cm², scanned over a 2 mm-square field for a field ionization source. A sensitivity analysis is given, and the optimum working distances of a given CFD system are presented for the minimum beam spot radius.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairSzilagyi, Miklos N.en_US
dc.contributor.committeememberReagan, John A.en_US
dc.contributor.committeememberSchrimpf, Ronald D.en_US
dc.contributor.committeememberJenkins, Edgar W.en_US
dc.contributor.committeememberBowen, Theodoreen_US
dc.identifier.proquest9531153en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.