Interaction of acoustic waves and anisotropic multilayered composite plates immersed in water.

Persistent Link:
http://hdl.handle.net/10150/186960
Title:
Interaction of acoustic waves and anisotropic multilayered composite plates immersed in water.
Author:
Yang, Wei
Issue Date:
1994
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation a theoretical analysis of elastic wave propagation in multilayered anisotropic composite plates is presented. Reflection and transmission coefficients as a function of the plane wave incident angle and ultrasonic wave frequency are computed for single layered and multilayered plates. From the minima of the reflection spectra one can obtain the Lamb wave modes. Computation of the displacement and stress components inside the plate show that different Lamb wave modes excite different levels of energy at various depths of the plate. These modes can be effectively used to detect and image defects in different layers of a plate. Theoretical predictions have been qualitatively verified experimentally by imaging internal defects inside different layers of a multilayered composite plate by different Lamb wave modes. Numerical precision problems associated with such analyses have been completed avoided for an unidirectional composite plate by solving the problem by symbolic programming instead of conventional numerical matrix manipulation technique.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Civil Engineering and Engineering Mechanics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Kundu, Tribikram

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleInteraction of acoustic waves and anisotropic multilayered composite plates immersed in water.en_US
dc.creatorYang, Weien_US
dc.contributor.authorYang, Weien_US
dc.date.issued1994en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation a theoretical analysis of elastic wave propagation in multilayered anisotropic composite plates is presented. Reflection and transmission coefficients as a function of the plane wave incident angle and ultrasonic wave frequency are computed for single layered and multilayered plates. From the minima of the reflection spectra one can obtain the Lamb wave modes. Computation of the displacement and stress components inside the plate show that different Lamb wave modes excite different levels of energy at various depths of the plate. These modes can be effectively used to detect and image defects in different layers of a plate. Theoretical predictions have been qualitatively verified experimentally by imaging internal defects inside different layers of a multilayered composite plate by different Lamb wave modes. Numerical precision problems associated with such analyses have been completed avoided for an unidirectional composite plate by solving the problem by symbolic programming instead of conventional numerical matrix manipulation technique.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairKundu, Tribikramen_US
dc.contributor.committeememberContractor, Dinshaw N.en_US
dc.contributor.committeememberDesai, Chandrakant S.en_US
dc.contributor.committeememberKiousis, Panosen_US
dc.contributor.committeememberArmaleh, Sonia Hannaen_US
dc.identifier.proquest9517571en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.