THE IMPORTANCE OF ACETYLATION IN POLYAMINE METABOLISM AND EXCRETION (SPERMIDINE).

Persistent Link:
http://hdl.handle.net/10150/186814
Title:
THE IMPORTANCE OF ACETYLATION IN POLYAMINE METABOLISM AND EXCRETION (SPERMIDINE).
Author:
PRUSSAK, CHARLES EDWARD.
Issue Date:
1983
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
To determine the structure(s) of the spermidine conjugate excreted into urine, extensive pharmacokinetic studies on the turnover of [¹⁴C]spermidine were conducted in both rats and humans. These studies demonstrated that exogenously administered [¹⁴C]spermidine equilibrated with endogenous polyamine pools. Radiolabeled urine collected from the humans was subjected to a cleanup protocol and subsequent analysis by GC-MS, which demonstrated the presence of N-acetylspermidine. Further analysis of the radiolabeled urine by thin layer chromatography (TLC) demonstrated the presence of both N¹- and N⁸-acetylspermidine in an approximate 1 to 1 ratio. Using similar methodologies the monoacetyl derivatives of putrescine and cadaverine were found to be the primary conjugated products of these polyamines excreted into human urine. Radiolabeled rat tissue extracts, analyzed by TLC, demonstrated that all tissues studied contained [¹⁴C] N¹- and N⁸-acetylspermidine. N¹-acetylspermidine was the primary isomer detected in all tissues; although, N⁸-acetylspermidine was detected in all tissues studied. The N-acetylspermidine content of an isolated cell system was determined in Chinese hamster ovary cells. These cells contained both N¹- and N⁸-acetylspermidine in an approximate 2 to 1 ratio. To directly measure the N-acetylpolyamines excreted into urine, two high performance liquid chromatography (HPLC) methods were developed. Both HPLC methods utilize a cation exchange resin, one using high pH, low salt buffers and the other low pH and high salt buffers. The primary N-acetylpolyamine excreted into human urine is N-acetylputrescine with lesser amounts of N¹- and N⁸-acetylspermidine which exist in a 1 to 1 ratio. In contrast, cancer patients excreted elevated amounts of both N-acetylputrescine and N¹-acetylspermidine. Cystic fibrosis patients were also found to excrete elevated amounts of N¹-acetylspermidine resulting in a consistently elevated N¹- to N⁸-acetylspermidine ratio. Mice injected with P-388 leukemia tumor excreted elevated amounts of N-acetylputrescine, N¹-acetylspermidine and N⁸-acetylspermidine. In contrast, the excretion of the unconjugated polyamines putrescine and spermidine in these animals was decreased, suggesting that the altered polyamine excretion was not primarily due to the presence of the tumor. Administration of Adriamycin to the tumor bearing animals resulted in the elevation of N¹-acetylspermidine excretion which was proportional to the relative tumor burden. Similar results were obtained from 2 human leukemia patients studied following chemotherapy.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Pharmacokinetics.; Polyamines -- Metabolism.; Spermidine.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Pharmacology and Toxicology; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTHE IMPORTANCE OF ACETYLATION IN POLYAMINE METABOLISM AND EXCRETION (SPERMIDINE).en_US
dc.creatorPRUSSAK, CHARLES EDWARD.en_US
dc.contributor.authorPRUSSAK, CHARLES EDWARD.en_US
dc.date.issued1983en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTo determine the structure(s) of the spermidine conjugate excreted into urine, extensive pharmacokinetic studies on the turnover of [¹⁴C]spermidine were conducted in both rats and humans. These studies demonstrated that exogenously administered [¹⁴C]spermidine equilibrated with endogenous polyamine pools. Radiolabeled urine collected from the humans was subjected to a cleanup protocol and subsequent analysis by GC-MS, which demonstrated the presence of N-acetylspermidine. Further analysis of the radiolabeled urine by thin layer chromatography (TLC) demonstrated the presence of both N¹- and N⁸-acetylspermidine in an approximate 1 to 1 ratio. Using similar methodologies the monoacetyl derivatives of putrescine and cadaverine were found to be the primary conjugated products of these polyamines excreted into human urine. Radiolabeled rat tissue extracts, analyzed by TLC, demonstrated that all tissues studied contained [¹⁴C] N¹- and N⁸-acetylspermidine. N¹-acetylspermidine was the primary isomer detected in all tissues; although, N⁸-acetylspermidine was detected in all tissues studied. The N-acetylspermidine content of an isolated cell system was determined in Chinese hamster ovary cells. These cells contained both N¹- and N⁸-acetylspermidine in an approximate 2 to 1 ratio. To directly measure the N-acetylpolyamines excreted into urine, two high performance liquid chromatography (HPLC) methods were developed. Both HPLC methods utilize a cation exchange resin, one using high pH, low salt buffers and the other low pH and high salt buffers. The primary N-acetylpolyamine excreted into human urine is N-acetylputrescine with lesser amounts of N¹- and N⁸-acetylspermidine which exist in a 1 to 1 ratio. In contrast, cancer patients excreted elevated amounts of both N-acetylputrescine and N¹-acetylspermidine. Cystic fibrosis patients were also found to excrete elevated amounts of N¹-acetylspermidine resulting in a consistently elevated N¹- to N⁸-acetylspermidine ratio. Mice injected with P-388 leukemia tumor excreted elevated amounts of N-acetylputrescine, N¹-acetylspermidine and N⁸-acetylspermidine. In contrast, the excretion of the unconjugated polyamines putrescine and spermidine in these animals was decreased, suggesting that the altered polyamine excretion was not primarily due to the presence of the tumor. Administration of Adriamycin to the tumor bearing animals resulted in the elevation of N¹-acetylspermidine excretion which was proportional to the relative tumor burden. Similar results were obtained from 2 human leukemia patients studied following chemotherapy.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPharmacokinetics.en_US
dc.subjectPolyamines -- Metabolism.en_US
dc.subjectSpermidine.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePharmacology and Toxicologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.committeememberBrendelen_US
dc.contributor.committeememberBurksen_US
dc.contributor.committeememberDavisen_US
dc.contributor.committeememberDurieen_US
dc.contributor.committeememberJohnsonen_US
dc.identifier.proquest8322650en_US
dc.identifier.oclc690022267en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.