APPLICATION OF THE THEORY OF REGIONALIZED VARIABLES TO EARTHQUAKE PARAMETRIC ESTIMATION AND SIMULATION (CALIFORNIA).

Persistent Link:
http://hdl.handle.net/10150/186679
Title:
APPLICATION OF THE THEORY OF REGIONALIZED VARIABLES TO EARTHQUAKE PARAMETRIC ESTIMATION AND SIMULATION (CALIFORNIA).
Author:
CARR, JAMES RUSSELL.
Issue Date:
1983
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Historical accounts of earthquakes show a high degree of spatial variability and uncertainty associated with ground motion. For this reason, historical data are not often used as input for earthquake hazard assessment. Regionally, however, earthquake ground motion is related by the concept of attenuation. Seismic hazard assessment techniques usually rely on catalogues of earthquake epicenters together with empirical attenuation relationships to define the seismic hazard for a particular region. Such techniques, however, overlook local variations in ground motion associated with actual earthquakes. A technique for seismic hazard assessment that includes historical data using the theory of regionalized variables and linear estimation techniques best represents ground motion dichotomy. Modified Mercalli intensity observations for the period 1930 through 1971 were treated as regionalized variables to define the seismic hazard for a region of Southern California centered around San Fernando. Despite variations in construction quality and individual sensitivity to ground motion, intensity values associated with seventy percent of the earthquakes that occurred during this period, for which at least five intensity observations were recorded, were accurately treated as regionalized variables. A Gumbel analysis computed using spatially regular data sets developed from these intensity values precisely associated high hazard regions with active faults near San Fernando. Other earthquake ground motion data can also be treated, accurately, as regionalized variables. These data include peak instrument recordings of spectral acceleration, velocity, and displacement. Moreover, response to earthquake ground motion at discrete frequencies, as recorded by response spectra, is also regionalized. These data, therefore, are accurately estimated using kriging. Fundamentally, because earthquake ground motion is shown to be a regionalized variable, all aspects of regionalized variables theory are applicable for these data, including disjunctive kriging, conditional simulation, and co-kriging.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Earthquakes -- Data processing.; Earthquake prediction -- Data processing.; Earthquakes -- Mathematical models.; Earthquake prediction -- Mathematical models.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Mining and Geological Engineering; Graduate College
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAPPLICATION OF THE THEORY OF REGIONALIZED VARIABLES TO EARTHQUAKE PARAMETRIC ESTIMATION AND SIMULATION (CALIFORNIA).en_US
dc.creatorCARR, JAMES RUSSELL.en_US
dc.contributor.authorCARR, JAMES RUSSELL.en_US
dc.date.issued1983en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractHistorical accounts of earthquakes show a high degree of spatial variability and uncertainty associated with ground motion. For this reason, historical data are not often used as input for earthquake hazard assessment. Regionally, however, earthquake ground motion is related by the concept of attenuation. Seismic hazard assessment techniques usually rely on catalogues of earthquake epicenters together with empirical attenuation relationships to define the seismic hazard for a particular region. Such techniques, however, overlook local variations in ground motion associated with actual earthquakes. A technique for seismic hazard assessment that includes historical data using the theory of regionalized variables and linear estimation techniques best represents ground motion dichotomy. Modified Mercalli intensity observations for the period 1930 through 1971 were treated as regionalized variables to define the seismic hazard for a region of Southern California centered around San Fernando. Despite variations in construction quality and individual sensitivity to ground motion, intensity values associated with seventy percent of the earthquakes that occurred during this period, for which at least five intensity observations were recorded, were accurately treated as regionalized variables. A Gumbel analysis computed using spatially regular data sets developed from these intensity values precisely associated high hazard regions with active faults near San Fernando. Other earthquake ground motion data can also be treated, accurately, as regionalized variables. These data include peak instrument recordings of spectral acceleration, velocity, and displacement. Moreover, response to earthquake ground motion at discrete frequencies, as recorded by response spectra, is also regionalized. These data, therefore, are accurately estimated using kriging. Fundamentally, because earthquake ground motion is shown to be a regionalized variable, all aspects of regionalized variables theory are applicable for these data, including disjunctive kriging, conditional simulation, and co-kriging.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEarthquakes -- Data processing.en_US
dc.subjectEarthquake prediction -- Data processing.en_US
dc.subjectEarthquakes -- Mathematical models.en_US
dc.subjectEarthquake prediction -- Mathematical models.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMining and Geological Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest8322638en_US
dc.identifier.oclc11461539en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.