Persistent Link:
http://hdl.handle.net/10150/186562
Title:
A spreading blob vortex method for viscous bounded flows.
Author:
Rossi, Louis Frank.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation, I introduce a vortex method that is generally applicable to any two-dimensional, incompressible flow with or without boundaries. This method is deterministic, accurate, convergent, naturally adaptive, geometry independent and fully localized. For viscous flows, the vorticity distribution of each vortex element must evolve in addition to following a Lagrangian trajectory. My method relies upon an idea called core spreading. Core spreading is inconsistent by itself, but I have corrected it with a deterministic process known as "vortex fission" where one "fat" vortex is replaced by several "thinner" ones. Also, I examine rigorously a method for merging many blobs into one. This process maintains smaller problem sizes thus boosting the efficiency of the vortex method. To prove that this corrected core spreading method will converge uniformly, I adapted a continuous formalism to this grid-free scheme. This convergence theory does not rely on any form of grid. I only examine the linear problem where the flow field is specified, and treat the full nonlinear problem as a perturbation of the linear problem. The estimated rate of convergence is demonstrated to be sharp in several examples. Boundary conditions are approximated indirectly. The boundary is decomposed into a collection of small linear segments. I solve the no-slip and no-normal flow conditions simultaneously by superimposing a potential flow and injecting vorticity from the boundary consistent with the unsteady Rayleigh problem. Finally, the ultimate test for this new method is to simulate the wall jet. The simulations produce a dipole instability along the wall as observed in water tank and wind tunnel experiments and predicted by linear stability analysis. Moreover, the wavelength and height of these simulations agree quantitatively with experimental observations.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Lattice theory.; Viscous flow -- Mathematical models.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Bayly, Bruce

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA spreading blob vortex method for viscous bounded flows.en_US
dc.creatorRossi, Louis Frank.en_US
dc.contributor.authorRossi, Louis Frank.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation, I introduce a vortex method that is generally applicable to any two-dimensional, incompressible flow with or without boundaries. This method is deterministic, accurate, convergent, naturally adaptive, geometry independent and fully localized. For viscous flows, the vorticity distribution of each vortex element must evolve in addition to following a Lagrangian trajectory. My method relies upon an idea called core spreading. Core spreading is inconsistent by itself, but I have corrected it with a deterministic process known as "vortex fission" where one "fat" vortex is replaced by several "thinner" ones. Also, I examine rigorously a method for merging many blobs into one. This process maintains smaller problem sizes thus boosting the efficiency of the vortex method. To prove that this corrected core spreading method will converge uniformly, I adapted a continuous formalism to this grid-free scheme. This convergence theory does not rely on any form of grid. I only examine the linear problem where the flow field is specified, and treat the full nonlinear problem as a perturbation of the linear problem. The estimated rate of convergence is demonstrated to be sharp in several examples. Boundary conditions are approximated indirectly. The boundary is decomposed into a collection of small linear segments. I solve the no-slip and no-normal flow conditions simultaneously by superimposing a potential flow and injecting vorticity from the boundary consistent with the unsteady Rayleigh problem. Finally, the ultimate test for this new method is to simulate the wall jet. The simulations produce a dipole instability along the wall as observed in water tank and wind tunnel experiments and predicted by linear stability analysis. Moreover, the wavelength and height of these simulations agree quantitatively with experimental observations.en_US
dc.description.noteDigitization note: pgs. 32-40 missing from paper original and not available for rescanning.-
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectLattice theory.en_US
dc.subjectViscous flow -- Mathematical models.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairBayly, Bruceen_US
dc.contributor.committeememberLevermore, Daveen_US
dc.contributor.committeememberChow, Kwok W.en_US
dc.contributor.committeememberKerschen, Edwarden_US
dc.contributor.committeememberChampagne, F. H.en_US
dc.identifier.proquest9421768en_US
dc.identifier.oclc700951321en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.