Analysis of lubricant flows within the microgap of rotary lip seals.

Persistent Link:
http://hdl.handle.net/10150/186465
Title:
Analysis of lubricant flows within the microgap of rotary lip seals.
Author:
Vionnet, Carlos Alberto.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rotary lip seals. When a viscous lubricant flows between an elastic body and a rigid surface, the contact geometry may undergo substantial deformation affecting the flow field of the lubricant. Therefore, a coupled model between an elastic ring and the fluid film underneath it is proposed. Initially, a linear stability analysis is performed. Then, non-linear calculations are presented showing that the system deformations are able to induce mixing of lubricant throughout the sealed region. In the second part of this work, the flow of lubricant fluid through the micro-gap of rotary lip seals is analyzed theoretically and numerically from a different perspective. The study is carried out assuming that a 'small-gap' parameter δ attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the limit δ = 0, and the numerical solution of the resulting set of equations predicts transport of lubricant through the contact region due to centrifugal instabilities. Numerical results obtained with the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their importance in the simulated flow are discussed. To this aim, the penalty method for incompressible flows in presence of variable body forces is re-examined with the help of well-known examples, yielding a corrected formulation that is more accurate and faster than standard finite element methods found in the literature.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Mechanics, Applied.; Mechanical engineering.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Aerospace and Mechanical Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Heinrich, Juan Carlos

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAnalysis of lubricant flows within the microgap of rotary lip seals.en_US
dc.creatorVionnet, Carlos Alberto.en_US
dc.contributor.authorVionnet, Carlos Alberto.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rotary lip seals. When a viscous lubricant flows between an elastic body and a rigid surface, the contact geometry may undergo substantial deformation affecting the flow field of the lubricant. Therefore, a coupled model between an elastic ring and the fluid film underneath it is proposed. Initially, a linear stability analysis is performed. Then, non-linear calculations are presented showing that the system deformations are able to induce mixing of lubricant throughout the sealed region. In the second part of this work, the flow of lubricant fluid through the micro-gap of rotary lip seals is analyzed theoretically and numerically from a different perspective. The study is carried out assuming that a 'small-gap' parameter δ attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the limit δ = 0, and the numerical solution of the resulting set of equations predicts transport of lubricant through the contact region due to centrifugal instabilities. Numerical results obtained with the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their importance in the simulated flow are discussed. To this aim, the penalty method for incompressible flows in presence of variable body forces is re-examined with the help of well-known examples, yielding a corrected formulation that is more accurate and faster than standard finite element methods found in the literature.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectMechanics, Applied.en_US
dc.subjectMechanical engineering.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairHeinrich, Juan Carlosen_US
dc.contributor.committeememberKerschen, Edward J.en_US
dc.contributor.committeememberSridhar, K.R.en_US
dc.contributor.committeememberBrio, Moyseyen_US
dc.contributor.committeememberChow, Kwok W.en_US
dc.identifier.proquest9410666en_US
dc.identifier.oclc721330118en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.