Interpreting synthetic ground-penetrating radar using object-oriented, neural, fuzzy, and genetic processing.

Persistent Link:
http://hdl.handle.net/10150/186424
Title:
Interpreting synthetic ground-penetrating radar using object-oriented, neural, fuzzy, and genetic processing.
Author:
Boyd, Richard Victor.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This project, funded by NASA through the University of Arizona Space Engineering Research Center, is an extension of earlier work, and is aimed at developing the base technology for continuous profiling geophysical systems that will be able to determine not only where anomalous features lie, but also what they look like and, ultimately, what has caused them. A hybrid approach was used that employed object oriented and procedural programming, neural networks, fuzzy systems theory, genetic algorithms, and symbolic processing initially within a distributed computing architecture, and later on an 80486 PC platform. Neural networks were used to map synthetic GPR patterns to geometric models. Object oriented programming was combined with fuzzy theory to map these geometric models to a database of real world objects. GPR objects were then combined to build extended objects and systems. Genetic algorithms were used to fine tune the system. Testing was done solely with synthetic data, with future intent of progressing to laboratory and field geophysical patterns. The field context assigned to the vision system for this research corresponds to a buried prehistoric archaeological site comprising occupation and utility/storage rooms of various sizes. This context was chosen to take advantage of the rich suite of GPR patterns already collected, and the GPR modeling underway to characterize archaeological signatures on GPR. A room system was selected as the GPR target because it incorporated most of the basic characteristics expected for GPR systems in general. The interpretation system was able to handle, (1) Multiple components; (2) Offset components; (3) Non-continuous components; (4) Nonmonotonic states; (5) Fuzziness.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Mining engineering.; Computer science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Mining and Geological Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Glass, Charles E.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleInterpreting synthetic ground-penetrating radar using object-oriented, neural, fuzzy, and genetic processing.en_US
dc.creatorBoyd, Richard Victor.en_US
dc.contributor.authorBoyd, Richard Victor.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis project, funded by NASA through the University of Arizona Space Engineering Research Center, is an extension of earlier work, and is aimed at developing the base technology for continuous profiling geophysical systems that will be able to determine not only where anomalous features lie, but also what they look like and, ultimately, what has caused them. A hybrid approach was used that employed object oriented and procedural programming, neural networks, fuzzy systems theory, genetic algorithms, and symbolic processing initially within a distributed computing architecture, and later on an 80486 PC platform. Neural networks were used to map synthetic GPR patterns to geometric models. Object oriented programming was combined with fuzzy theory to map these geometric models to a database of real world objects. GPR objects were then combined to build extended objects and systems. Genetic algorithms were used to fine tune the system. Testing was done solely with synthetic data, with future intent of progressing to laboratory and field geophysical patterns. The field context assigned to the vision system for this research corresponds to a buried prehistoric archaeological site comprising occupation and utility/storage rooms of various sizes. This context was chosen to take advantage of the rich suite of GPR patterns already collected, and the GPR modeling underway to characterize archaeological signatures on GPR. A room system was selected as the GPR target because it incorporated most of the basic characteristics expected for GPR systems in general. The interpretation system was able to handle, (1) Multiple components; (2) Offset components; (3) Non-continuous components; (4) Nonmonotonic states; (5) Fuzziness.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectMining engineering.en_US
dc.subjectComputer science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMining and Geological Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairGlass, Charles E.en_US
dc.contributor.committeememberSternberg, Benen_US
dc.contributor.committeememberPoulton, Maryen_US
dc.contributor.committeememberZeigler, Bernarden_US
dc.contributor.committeememberRozenblit, Jerzyen_US
dc.identifier.proquest9408498en_US
dc.identifier.oclc720663504en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.