An optimization method for the design of structures for maximum fundamental frequency.

Persistent Link:
http://hdl.handle.net/10150/186321
Title:
An optimization method for the design of structures for maximum fundamental frequency.
Author:
Doyle, Keith Brian.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
An optimization method to maximize the fundamental frequency of a structure is developed. The procedure uses the stresses due to the mechanical loading and the free-vibration mode shapes to determine design coefficients for the elements. Each element of the structure is assigned a design coefficient rated on a scale of zero to ten. The design coefficients are used to modify an initial design following an iterative procedure. This method of optimal structural design, referred to as the Maximum Stiffness Design (MSD), may be classified as an intuitive optimality criteria method. The MSD method is demonstrated by increasing the fundamental frequency of simple beam structures, truss structures, and complex structures. These examples include a support structure for a telescope, a support structure for a beam collapser, an airplane wing, and a truss railroad bridge. The MSD optimization method is compared to NASTRAN's Design Sensitivity Analysis to provide a benchmark comparison. It is shown that the MSD method compares well to NASTRAN's optimization method. Furthermore, the optimization technique is used to develop optimum contour shapes for single arch, double arch, and edge-supported mirrors.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Aerospace engineering.; Civil engineering.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Civil Engineering and Engineering Mechanics; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Richard, Ralph M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAn optimization method for the design of structures for maximum fundamental frequency.en_US
dc.creatorDoyle, Keith Brian.en_US
dc.contributor.authorDoyle, Keith Brian.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAn optimization method to maximize the fundamental frequency of a structure is developed. The procedure uses the stresses due to the mechanical loading and the free-vibration mode shapes to determine design coefficients for the elements. Each element of the structure is assigned a design coefficient rated on a scale of zero to ten. The design coefficients are used to modify an initial design following an iterative procedure. This method of optimal structural design, referred to as the Maximum Stiffness Design (MSD), may be classified as an intuitive optimality criteria method. The MSD method is demonstrated by increasing the fundamental frequency of simple beam structures, truss structures, and complex structures. These examples include a support structure for a telescope, a support structure for a beam collapser, an airplane wing, and a truss railroad bridge. The MSD optimization method is compared to NASTRAN's Design Sensitivity Analysis to provide a benchmark comparison. It is shown that the MSD method compares well to NASTRAN's optimization method. Furthermore, the optimization technique is used to develop optimum contour shapes for single arch, double arch, and edge-supported mirrors.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectAerospace engineering.en_US
dc.subjectCivil engineering.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairRichard, Ralph M.en_US
dc.contributor.committeememberHaldar, Achintyaen_US
dc.contributor.committeememberWirsching, Paul H.en_US
dc.identifier.proquest9333326en_US
dc.identifier.oclc720032789en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.