Wettability aspects during silicon wafer cleaning in aqueous and organic systems.

Persistent Link:
http://hdl.handle.net/10150/186200
Title:
Wettability aspects during silicon wafer cleaning in aqueous and organic systems.
Author:
Park, Jin-Goo.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Alkaline solutions based on ammonium hydroxide and quaternary ammonium hydroxides such as choline (hydroxyethyl trimethyl ammonium hydroxide) and TMAH (tetramethyl ammonium hydroxide) are used widely in the wet processing of silicon wafers for the control of ionic and particulate impurities. The Wilhelmy plate technique was used in characterizing the ability of alkaline solutions to alter the wettability of wafers. Choline improved the water wettability of wafers, and at concentrations greater than 1000 ppm, rendered the wafers very hydrophilic. Ellipsometric and XPS analyses showed that the exposure of choline-treated surfaces to air resulted in the oxidation of Si to SiO₂. The increase of wettability of wafers in TMAH solutions was due to the roughness introduced by the high etch rate of TMAH solutions. Ammonia solutions without the addition of H₂O₂ did not increase wettability. The addition of H₂O₂ and a non-ionic surfactant to alkaline solutions significantly increased the wettability of wafers, decreased the etch rate, and resulted in smoother surfaces. The use of isopropyl alcohol (IPA) in the drying of wafers has been considered by the semiconductor industry. The addition of IPA to water resulted in a decrease in surface tension at the solution/vapor interface. The surface excess of IPA molecules at the solution/air interface was calculated to have a maximum value of 8.5 x 10⁻¹⁰ moles/cm² at a solution composition of 25% IPA and 75% water. IPA solutions with less than 25% IPA were very effective in removing PSL particles on hydrophilic wafers. Hydrophilic particles such as alumina and glass were difficult to remove from wafers in DI water and IPA solutions, however, hydrophobic particles such as silicon were slightly removable in DI water and IPA solutions. The wettability of particles (θ) and substrate (α) in solutions played important roles in removing particles on substrates. Leenaars' equation for the calculation of magnitude of surface tension force which balance adhesion force, F(A), did not seem to hold for solutions containing less than 25% IPA. Modification to this equation by adding a surface pressure term, π*, was considered in explaining the experimental results.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Materials science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Materials Science and Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Raghavan, Srini

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleWettability aspects during silicon wafer cleaning in aqueous and organic systems.en_US
dc.creatorPark, Jin-Goo.en_US
dc.contributor.authorPark, Jin-Goo.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAlkaline solutions based on ammonium hydroxide and quaternary ammonium hydroxides such as choline (hydroxyethyl trimethyl ammonium hydroxide) and TMAH (tetramethyl ammonium hydroxide) are used widely in the wet processing of silicon wafers for the control of ionic and particulate impurities. The Wilhelmy plate technique was used in characterizing the ability of alkaline solutions to alter the wettability of wafers. Choline improved the water wettability of wafers, and at concentrations greater than 1000 ppm, rendered the wafers very hydrophilic. Ellipsometric and XPS analyses showed that the exposure of choline-treated surfaces to air resulted in the oxidation of Si to SiO₂. The increase of wettability of wafers in TMAH solutions was due to the roughness introduced by the high etch rate of TMAH solutions. Ammonia solutions without the addition of H₂O₂ did not increase wettability. The addition of H₂O₂ and a non-ionic surfactant to alkaline solutions significantly increased the wettability of wafers, decreased the etch rate, and resulted in smoother surfaces. The use of isopropyl alcohol (IPA) in the drying of wafers has been considered by the semiconductor industry. The addition of IPA to water resulted in a decrease in surface tension at the solution/vapor interface. The surface excess of IPA molecules at the solution/air interface was calculated to have a maximum value of 8.5 x 10⁻¹⁰ moles/cm² at a solution composition of 25% IPA and 75% water. IPA solutions with less than 25% IPA were very effective in removing PSL particles on hydrophilic wafers. Hydrophilic particles such as alumina and glass were difficult to remove from wafers in DI water and IPA solutions, however, hydrophobic particles such as silicon were slightly removable in DI water and IPA solutions. The wettability of particles (θ) and substrate (α) in solutions played important roles in removing particles on substrates. Leenaars' equation for the calculation of magnitude of surface tension force which balance adhesion force, F(A), did not seem to hold for solutions containing less than 25% IPA. Modification to this equation by adding a surface pressure term, π*, was considered in explaining the experimental results.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectMaterials science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMaterials Science and Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairRaghavan, Srinien_US
dc.contributor.committeememberEnemark, John H.en_US
dc.contributor.committeememberO'Hanlon, John F.en_US
dc.contributor.committeememberHiskey, J. Brenten_US
dc.contributor.committeememberBirnie, Dunbar P., IIIen_US
dc.identifier.proquest9322700en_US
dc.identifier.oclc715463337en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.