A hierarchical, modular simulation environment for flexible manufacturing system modeling.

Persistent Link:
http://hdl.handle.net/10150/186144
Title:
A hierarchical, modular simulation environment for flexible manufacturing system modeling.
Author:
Cho, Tae Ho.
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Computer simulation is one of the most widely used techniques in manufacturing systems study. The value of simulation increases constantly due to improvements in computing power. However models of large-scale systems tend to be very complex, and writing simulation programs to execute them can be an arduous task. Rapid modeling of such systems can play a significant role in the selecting manufacturing strategy. This dissertation deals with the design and implementation of tools that aid in such modeling activity by identifying some of the problems that occur frequently in the modeling of flexible manufacturing systems (FMS). This set of tools, collectively called the hierarchical modular modeling environment (HMME), is designed and implement by extending DEVS(Discrete EVent System Specification)-Scheme. The problems identified are in the field of model interconnections, embedding expert systems in models, model structuring and simulation display. An example, of operation overlapping strategy in a hierarchical FMS, demonstrates the utility of the environment. Although developed for FMS simulation, this modeling aid is applicable to many other domains of knowledge-based systems and intelligent control.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; System theory.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Electrical and Computer Engineering; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Zeigler, Bernard P.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleA hierarchical, modular simulation environment for flexible manufacturing system modeling.en_US
dc.creatorCho, Tae Ho.en_US
dc.contributor.authorCho, Tae Ho.en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractComputer simulation is one of the most widely used techniques in manufacturing systems study. The value of simulation increases constantly due to improvements in computing power. However models of large-scale systems tend to be very complex, and writing simulation programs to execute them can be an arduous task. Rapid modeling of such systems can play a significant role in the selecting manufacturing strategy. This dissertation deals with the design and implementation of tools that aid in such modeling activity by identifying some of the problems that occur frequently in the modeling of flexible manufacturing systems (FMS). This set of tools, collectively called the hierarchical modular modeling environment (HMME), is designed and implement by extending DEVS(Discrete EVent System Specification)-Scheme. The problems identified are in the field of model interconnections, embedding expert systems in models, model structuring and simulation display. An example, of operation overlapping strategy in a hierarchical FMS, demonstrates the utility of the environment. Although developed for FMS simulation, this modeling aid is applicable to many other domains of knowledge-based systems and intelligent control.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectSystem theory.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairZeigler, Bernard P.en_US
dc.contributor.committeememberRozenblit, Jerzy W.en_US
dc.contributor.committeememberMarefat, Michael M.en_US
dc.identifier.proquest9322645en_US
dc.identifier.oclc715378838en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.