Nonlinear polarization switching and logic operation with rocking filter fibers.

Persistent Link:
http://hdl.handle.net/10150/186113
Title:
Nonlinear polarization switching and logic operation with rocking filter fibers.
Author:
Krautschik, Christof Gabriel.
Issue Date:
1992
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation investigates experimentally as well as theoretically several all-optical switching configurations in a rocking filter fiber. It is shown experimentally that the rocking filter can be used as an intensity dependent polarization switch at the resonant wavelength. Up to 70% of the input power consisting of 30 ps pulses could be switched between the orthogonal polarization axes of a 2 long fiber. Stimulated Raman scattering and pulse break-up led to the saturation of the self-switching response. Off-resonant self-switching was shown to yield an enhanced response at shorter wavelengths with lower critical powers than for the resonant case. At longer wavelengths switching was initially inhibited but could still be implemented at powers significantly larger than for shorter wavelengths. This result implies that switching is noreciprocal which is a useful and necessary condition for operating a device as a logic gate. Controlling an intense signal pulse by a weak control pulse through a variable phase delay was successfully demonstrated. In excess of 55% of the input energy could be switched by controlling the phase difference between the two pulses. The phase-sensitive response suffered just as for the self-switching response from Raman scattering and pulse break-up. When combining the nonreciprocity due to wavelength detuning with the phase-sensitive response, logic operation with rocking filters can be implemented. By choosing the proper operating conditions of the device. e.g. input power, phase delay, and wavelength detuning, it is shown that XOR, OR, and AND gates can be realized. The contrast between a logic 0 and 1 state was shown to be as low as 0.3 and 0.7, respectively. Strong pump controlled switching of a weak signal beam produced the best switching characteristics of this dissertation. Up to 90% of the signal pulse could be switched between polarization states. This result was accomplished by using a pump pulse at a different wavelength which had a pulsewidth three times as large than that of the signal pulse.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Stegeman, George I.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNonlinear polarization switching and logic operation with rocking filter fibers.en_US
dc.creatorKrautschik, Christof Gabriel.en_US
dc.contributor.authorKrautschik, Christof Gabriel.en_US
dc.date.issued1992en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation investigates experimentally as well as theoretically several all-optical switching configurations in a rocking filter fiber. It is shown experimentally that the rocking filter can be used as an intensity dependent polarization switch at the resonant wavelength. Up to 70% of the input power consisting of 30 ps pulses could be switched between the orthogonal polarization axes of a 2 long fiber. Stimulated Raman scattering and pulse break-up led to the saturation of the self-switching response. Off-resonant self-switching was shown to yield an enhanced response at shorter wavelengths with lower critical powers than for the resonant case. At longer wavelengths switching was initially inhibited but could still be implemented at powers significantly larger than for shorter wavelengths. This result implies that switching is noreciprocal which is a useful and necessary condition for operating a device as a logic gate. Controlling an intense signal pulse by a weak control pulse through a variable phase delay was successfully demonstrated. In excess of 55% of the input energy could be switched by controlling the phase difference between the two pulses. The phase-sensitive response suffered just as for the self-switching response from Raman scattering and pulse break-up. When combining the nonreciprocity due to wavelength detuning with the phase-sensitive response, logic operation with rocking filters can be implemented. By choosing the proper operating conditions of the device. e.g. input power, phase delay, and wavelength detuning, it is shown that XOR, OR, and AND gates can be realized. The contrast between a logic 0 and 1 state was shown to be as low as 0.3 and 0.7, respectively. Strong pump controlled switching of a weak signal beam produced the best switching characteristics of this dissertation. Up to 90% of the signal pulse could be switched between polarization states. This result was accomplished by using a pump pulse at a different wavelength which had a pulsewidth three times as large than that of the signal pulse.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectOptics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairStegeman, George I.en_US
dc.contributor.committeememberWright, Ewan M.en_US
dc.contributor.committeememberBurke, J.J.en_US
dc.identifier.proquest9313013en_US
dc.identifier.oclc714879537en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.