Persistent Link:
http://hdl.handle.net/10150/186077
Title:
Multispectral fluorescence imaging of atherosclerosis.
Author:
Davenport, Carolyn Marie Connor.
Issue Date:
1992
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Multispectral fluorescence imaging is a new diagnostic technique with the potential to provide improved detection and classification of atherosclerotic disease. This technique involves imaging the fluorescence response of a tissue region through a tunable band-pass filtering device. The result is a set of images in which each individual image is composed of the fluorescence emission within a specified band of wavelengths. Multispectral imaging combined with angioscopic technology allows direct access to important spectral information and spatial attributes providing the potential for more informed clinical decisions about which, if any, treatment modality is indicated. In this dissertation, the system requirements for an angioscopic system with multispectral imaging capability are identified. This analysis includes a description of the necessary optical components and their characteristics as well as the experimental determination of spectral radiance values for the fluorescence response of human aorta specimens and the estimation of anticipated signal-to-noise ratios for the spectral images. Other issues investigated include the number of spectral images required to provide good classification potential and the best normalization method to be utilized. Finally, the potential utility of the information contained within a multispectral data set is demonstrated. Two methods of utilizing the multispectral data are presented. The first method involves generating a ratio-image from the ratio of the intensities of two spectrally filtered images. The second method consists of using histologically verified training data to train a projector and then applying that projector to a set of spectral images. The result (a weighted sum of the spectral images) provides improved contrast between normal and diseased tissue, and is called an optimized-contrast image. White-light images (generated using an incandescent light source), total-fluorescence images (the fluorescence response without spectral filtering), ratio-images, and optimized contrast images are compared. The results indicate that angioscopic fluorescence imaging appears to be a feasible and potentially useful technique in terms of providing improved detection of atherosclerotic disease. This technique warrants further investigation to further define the system requirements and to evaluate its clinical usefulness including the collection of a more extensive data set and the development of a prototype system.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Radiology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Gmitro, Arthur F.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleMultispectral fluorescence imaging of atherosclerosis.en_US
dc.creatorDavenport, Carolyn Marie Connor.en_US
dc.contributor.authorDavenport, Carolyn Marie Connor.en_US
dc.date.issued1992en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMultispectral fluorescence imaging is a new diagnostic technique with the potential to provide improved detection and classification of atherosclerotic disease. This technique involves imaging the fluorescence response of a tissue region through a tunable band-pass filtering device. The result is a set of images in which each individual image is composed of the fluorescence emission within a specified band of wavelengths. Multispectral imaging combined with angioscopic technology allows direct access to important spectral information and spatial attributes providing the potential for more informed clinical decisions about which, if any, treatment modality is indicated. In this dissertation, the system requirements for an angioscopic system with multispectral imaging capability are identified. This analysis includes a description of the necessary optical components and their characteristics as well as the experimental determination of spectral radiance values for the fluorescence response of human aorta specimens and the estimation of anticipated signal-to-noise ratios for the spectral images. Other issues investigated include the number of spectral images required to provide good classification potential and the best normalization method to be utilized. Finally, the potential utility of the information contained within a multispectral data set is demonstrated. Two methods of utilizing the multispectral data are presented. The first method involves generating a ratio-image from the ratio of the intensities of two spectrally filtered images. The second method consists of using histologically verified training data to train a projector and then applying that projector to a set of spectral images. The result (a weighted sum of the spectral images) provides improved contrast between normal and diseased tissue, and is called an optimized-contrast image. White-light images (generated using an incandescent light source), total-fluorescence images (the fluorescence response without spectral filtering), ratio-images, and optimized contrast images are compared. The results indicate that angioscopic fluorescence imaging appears to be a feasible and potentially useful technique in terms of providing improved detection of atherosclerotic disease. This technique warrants further investigation to further define the system requirements and to evaluate its clinical usefulness including the collection of a more extensive data set and the development of a prototype system.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectRadiology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairGmitro, Arthur F.en_US
dc.contributor.committeememberGreivenkamp, Jr., John E.en_US
dc.contributor.committeememberRoehrig, Hansen_US
dc.identifier.proquest9309037en_US
dc.identifier.oclc714164173en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.