Trace element analysis of ureilite meteorites and implications for their petrogenesis.

Persistent Link:
http://hdl.handle.net/10150/185743
Title:
Trace element analysis of ureilite meteorites and implications for their petrogenesis.
Author:
Spitz, Anna Hargrave.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Ureilite meteorites are the second largest class of achondrite meteorites. They are perhaps the most enigmatic of all classes of meteorites and the dilemma over how they were formed has perplexed the meteoritic community for over a decade. This research was undertaken to illuminate the details of the petrogenesis of ureilites through the collection of trace element data. The results presented here indicate that many of the petrogenesis hypotheses promoted are no longer tenable and that the available data on ureilites are not sufficient to unravel the mystery of their origin. This dissertation discusses the data collected using two techniques: neutron activation analysis and inductively coupled plasma-mass spectrometry. Specific procedures required to study the ureilites (due to low concentrations of some trace elements) are delineated. Results are presented for the following elements: Ca, Co, Zn, Ga, Cu, Cs, Rb, Sr, Mo, Y, Ba, REE, Hf, W, Re and Ir. The results lead to the conclusion that the ureilites must be considered a mixture of materials--an original ultramafic rock formed by melting of processed source material combined with carbonaceous material added after the ultramafic formation. This conclusion explains the trace element chemical signatures and is supported by the age information obtained from Sm-Nd and Rb-Sr isotopic systems.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic.; Geochemistry.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Geosciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Boynton, Bill

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTrace element analysis of ureilite meteorites and implications for their petrogenesis.en_US
dc.creatorSpitz, Anna Hargrave.en_US
dc.contributor.authorSpitz, Anna Hargrave.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractUreilite meteorites are the second largest class of achondrite meteorites. They are perhaps the most enigmatic of all classes of meteorites and the dilemma over how they were formed has perplexed the meteoritic community for over a decade. This research was undertaken to illuminate the details of the petrogenesis of ureilites through the collection of trace element data. The results presented here indicate that many of the petrogenesis hypotheses promoted are no longer tenable and that the available data on ureilites are not sufficient to unravel the mystery of their origin. This dissertation discusses the data collected using two techniques: neutron activation analysis and inductively coupled plasma-mass spectrometry. Specific procedures required to study the ureilites (due to low concentrations of some trace elements) are delineated. Results are presented for the following elements: Ca, Co, Zn, Ga, Cu, Cs, Rb, Sr, Mo, Y, Ba, REE, Hf, W, Re and Ir. The results lead to the conclusion that the ureilites must be considered a mixture of materials--an original ultramafic rock formed by melting of processed source material combined with carbonaceous material added after the ultramafic formation. This conclusion explains the trace element chemical signatures and is supported by the age information obtained from Sm-Nd and Rb-Sr isotopic systems.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academic.en_US
dc.subjectGeochemistry.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBoynton, Billen_US
dc.contributor.committeememberDrake, Michaelen_US
dc.contributor.committeememberGanguly, Jibaen_US
dc.contributor.committeememberPatchett, Jonen_US
dc.identifier.proquest9213691en_US
dc.identifier.oclc712067549en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.