Persistent Link:
http://hdl.handle.net/10150/185633
Title:
Disk components in early-type galaxies.
Author:
Rix, Hans-Walter Reinhard.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This thesis clarifies the role of disk components embedded in the spheroids of early type galaxies, with particular focus on the frequency and structure of disks in galaxies conventionally classified as "ellipticals". We discuss both photometric and spectroscopic means of assessing disks. Using simple photometric models, we explore what physical disk parameters result in detectable photometric signatures. We discuss in particular the deviations of the projected isophotes from perfect ellipses in disk/spheroid systems. We show that a wide range of intrinsic disk-to-spheroid ratios (D/S) can produce very similar photometric signatures, depending on viewing angle. We find the distribution of observed isophote distortions in a sample of ellipticals with published surface photometry to be consistent with the D/S hypothesis, implying that about half of the sample members could contain disks with D/S ∼ 0.25. To confront our models with a more suitable set of data, we obtained surface photometry at 0.4μ and 1.6μ for a statistical sample of about 80 galaxies, comprised of both E's and S0's. Analyzing this data set we find that in any given luminosity bin of early type galaxies, one third of the objects contain disks whose detectability depends on a favourably high inclination. This fraction was estimated independently from isophote distortions and from radial luminosity profiles. The apparent smooth transition between disk galaxies and purely spheroidal objects can be explained exclusively by changes in the viewing angle, even assuming two discrete classes of early type galaxies (either having substantial disks or none at all). There is no need to invoke continuity along the Hubble sequence from E's to S0's. For the members of this sample we find a considerable range in D/S, 0.15 < D/S < 5. However, most of that variation is caused by changes in the relative scale lengths rather than by changes in disk surface brightness. To analyze kinematic signatures of disk components we develop an optimal algorithm to extract the line-of-sight velocity distribution (LOSVD) from the broadening of absorption line spectra. Analyzing the LOSVD's in two kinematically distinct cores of elliptical galaxies, we find that they can be modelled dynamically as small disks embedded in the large spheroid. The range in rotational support, 1.3 < ν/σ < 4, of these disks suggests that some of them have formed dissipatively and others through a merger event.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Elliptical galaxies.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Astronomy; Graduate College
Degree Grantor:
University of Arizona
Advisor:
White, S.D.M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDisk components in early-type galaxies.en_US
dc.creatorRix, Hans-Walter Reinhard.en_US
dc.contributor.authorRix, Hans-Walter Reinhard.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis thesis clarifies the role of disk components embedded in the spheroids of early type galaxies, with particular focus on the frequency and structure of disks in galaxies conventionally classified as "ellipticals". We discuss both photometric and spectroscopic means of assessing disks. Using simple photometric models, we explore what physical disk parameters result in detectable photometric signatures. We discuss in particular the deviations of the projected isophotes from perfect ellipses in disk/spheroid systems. We show that a wide range of intrinsic disk-to-spheroid ratios (D/S) can produce very similar photometric signatures, depending on viewing angle. We find the distribution of observed isophote distortions in a sample of ellipticals with published surface photometry to be consistent with the D/S hypothesis, implying that about half of the sample members could contain disks with D/S ∼ 0.25. To confront our models with a more suitable set of data, we obtained surface photometry at 0.4μ and 1.6μ for a statistical sample of about 80 galaxies, comprised of both E's and S0's. Analyzing this data set we find that in any given luminosity bin of early type galaxies, one third of the objects contain disks whose detectability depends on a favourably high inclination. This fraction was estimated independently from isophote distortions and from radial luminosity profiles. The apparent smooth transition between disk galaxies and purely spheroidal objects can be explained exclusively by changes in the viewing angle, even assuming two discrete classes of early type galaxies (either having substantial disks or none at all). There is no need to invoke continuity along the Hubble sequence from E's to S0's. For the members of this sample we find a considerable range in D/S, 0.15 < D/S < 5. However, most of that variation is caused by changes in the relative scale lengths rather than by changes in disk surface brightness. To analyze kinematic signatures of disk components we develop an optimal algorithm to extract the line-of-sight velocity distribution (LOSVD) from the broadening of absorption line spectra. Analyzing the LOSVD's in two kinematically distinct cores of elliptical galaxies, we find that they can be modelled dynamically as small disks embedded in the large spheroid. The range in rotational support, 1.3 < ν/σ < 4, of these disks suggests that some of them have formed dissipatively and others through a merger event.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectElliptical galaxies.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAstronomyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWhite, S.D.M.en_US
dc.contributor.committeememberRieke, Marciaen_US
dc.contributor.committeememberImpey, Christopher-
dc.identifier.proquest9208032en_US
dc.identifier.oclc703615139en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.