The electrical properties of contamination particle traps in a process plasma.

Persistent Link:
http://hdl.handle.net/10150/185607
Title:
The electrical properties of contamination particle traps in a process plasma.
Author:
Geha, Sam George.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Clouds of contamination particles suspended in process plasma have been observed by several workers. This dissertation reports on the electrical properties of such clouds (referred to as Electrostatic Particle Traps or EPT) in an argon sputter plasma using a silicon wafer placed upon a graphite substrate. Particle traps were illuminated using a specially adopted laser scanning technique. A tuned Langmuir probe was then inserted into the region of the trap and used to map several parameters including the time-averaged plasma potential. The trap was found to be as much as 5 volts higher in plasma potential than the surrounding plasma. Elementary electrostatics dictates that the trap is a region of net positive charge with an electric field being directed outward from the trap. Thus, negatively charged particles will flow into the trap. It was also found that the electrical properties of contamination particle traps are highly dependent upon the topography of the target and the materials used, with different results being obtained for each material combination. The Langmuir probe was also found to be an effective tool for mapping the interface between the plasma and the sheath to within 0.5 mm; the interface follows the topography on the wafer electrode.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Dissertations, Academic; Electrical engineering.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Electrical and Computer Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Carlile, Robert N.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe electrical properties of contamination particle traps in a process plasma.en_US
dc.creatorGeha, Sam George.en_US
dc.contributor.authorGeha, Sam George.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.-
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractClouds of contamination particles suspended in process plasma have been observed by several workers. This dissertation reports on the electrical properties of such clouds (referred to as Electrostatic Particle Traps or EPT) in an argon sputter plasma using a silicon wafer placed upon a graphite substrate. Particle traps were illuminated using a specially adopted laser scanning technique. A tuned Langmuir probe was then inserted into the region of the trap and used to map several parameters including the time-averaged plasma potential. The trap was found to be as much as 5 volts higher in plasma potential than the surrounding plasma. Elementary electrostatics dictates that the trap is a region of net positive charge with an electric field being directed outward from the trap. Thus, negatively charged particles will flow into the trap. It was also found that the electrical properties of contamination particle traps are highly dependent upon the topography of the target and the materials used, with different results being obtained for each material combination. The Langmuir probe was also found to be an effective tool for mapping the interface between the plasma and the sheath to within 0.5 mm; the interface follows the topography on the wafer electrode.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectDissertations, Academicen_US
dc.subjectElectrical engineering.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCarlile, Robert N.en_US
dc.contributor.committeememberO'Hanlon, John F.en_US
dc.contributor.committeememberParks, Harold G.en_US
dc.identifier.proquest9202078en_US
dc.identifier.oclc711788092en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.