Numerical simulation of the control of wave packet disturbances in the boundary layer on a flat plate.

Persistent Link:
http://hdl.handle.net/10150/185512
Title:
Numerical simulation of the control of wave packet disturbances in the boundary layer on a flat plate.
Author:
Dittrich, Peter Aloisius.
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The control of the transition from laminar to turbulent flow in a boundary layer of a flat plate is investigated using numerical simulations. The numerical model is based on the incompressible Navier-Stokes equations, which is coupled with the energy equation through the temperature dependent viscosity. A fully implicit finite difference spectral method was used to solve the governing equations. The numerical model allows for the spatial evolution of the disturbances in a non-parallel boundary layer. Active control of wave packet disturbances in the non-isothermal boundary layer is studied in detail. Wave packet disturbances are created in the flow field by simulating the effect of thermally activated heater elements on the plate surface. Through a controlled spanwise variation of the temperature of the heater elements, two- and three-dimensional wave packet disturbances can be studied. The propagation and amplification of the wave packet disturbances in the boundary layer is examined. The heater elements on the plate surface act as locally strong heat sources causing thermal wakes within the boundary layer that spread in the downstream direction. A transfer function technique is used for the control strategy. The transfer function is based on the vorticity response to a finite temperature fluctuation at the heater strip and is obtained from the numerical simulations. With additional heater segments (controller) located downstream of an excitation source, the possibility of attenuating wave packet disturbances is investigated. With the numerical transfer function, a successful control strategy for the wave packet cancellation could be developed. Initially, for the low amplitude, two-dimensional disturbances in the transition process with the implemented control strategy the wave packet disturbances could be almost completely cancelled. For the attentuation of three-dimensional wave packet disturbances, the transfer function technique was extended to allow for spanwise variations. The attenuation of three-dimensional wave packets with the modified transfer function technique was almost equally as successful as for the purely two-dimensional flow disturbances. For the simulation of the three-dimensional flow development with no control applied, nonlinear interaction of wave components of the wave packet first appeared for the oblique modes in the low frequency range, which was also observed in experimental investigations. The attenuation of only the two-dimensional components of a three-dimensional wave packet disturbance delays the onset of the nonlinear interaction of the oblique spanwise modes in the lower frequency range.
Type:
text; Dissertation-Reproduction (electronic)
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Aerospace and Mechanical Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Fasel, Hermann F.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNumerical simulation of the control of wave packet disturbances in the boundary layer on a flat plate.en_US
dc.creatorDittrich, Peter Aloisius.en_US
dc.contributor.authorDittrich, Peter Aloisius.en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe control of the transition from laminar to turbulent flow in a boundary layer of a flat plate is investigated using numerical simulations. The numerical model is based on the incompressible Navier-Stokes equations, which is coupled with the energy equation through the temperature dependent viscosity. A fully implicit finite difference spectral method was used to solve the governing equations. The numerical model allows for the spatial evolution of the disturbances in a non-parallel boundary layer. Active control of wave packet disturbances in the non-isothermal boundary layer is studied in detail. Wave packet disturbances are created in the flow field by simulating the effect of thermally activated heater elements on the plate surface. Through a controlled spanwise variation of the temperature of the heater elements, two- and three-dimensional wave packet disturbances can be studied. The propagation and amplification of the wave packet disturbances in the boundary layer is examined. The heater elements on the plate surface act as locally strong heat sources causing thermal wakes within the boundary layer that spread in the downstream direction. A transfer function technique is used for the control strategy. The transfer function is based on the vorticity response to a finite temperature fluctuation at the heater strip and is obtained from the numerical simulations. With additional heater segments (controller) located downstream of an excitation source, the possibility of attenuating wave packet disturbances is investigated. With the numerical transfer function, a successful control strategy for the wave packet cancellation could be developed. Initially, for the low amplitude, two-dimensional disturbances in the transition process with the implemented control strategy the wave packet disturbances could be almost completely cancelled. For the attentuation of three-dimensional wave packet disturbances, the transfer function technique was extended to allow for spanwise variations. The attenuation of three-dimensional wave packets with the modified transfer function technique was almost equally as successful as for the purely two-dimensional flow disturbances. For the simulation of the three-dimensional flow development with no control applied, nonlinear interaction of wave components of the wave packet first appeared for the oblique modes in the low frequency range, which was also observed in experimental investigations. The attenuation of only the two-dimensional components of a three-dimensional wave packet disturbance delays the onset of the nonlinear interaction of the oblique spanwise modes in the lower frequency range.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFasel, Hermann F.en_US
dc.contributor.committeememberFung, K.Y.en_US
dc.contributor.committeememberChan, C.Len_US
dc.identifier.proquest9136844en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.